
WLAN Toolbox™
Getting Started Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

WLAN Toolbox™ Getting Started Guide
© COPYRIGHT 2015–2021 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2015 Online only New for Version 1.0 (Release 2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
September 2017 Online only Revised for Version 1.4 (Release 2017b)
March 2018 Online only Revised for Version 1.5 (Release 2018a)
September 2018 Online only Revised for Version 2.0 (Release 2018b)
March 2019 Online only Revised for Version 2.1 (Release 2019a)
September 2019 Online only Revised for Version 2.2 (Release 2019b)
March 2020 Online only Revised for Version 3.0 (Release 2020a)
September 2020 Online only Revised for Version 3.1 (Release 2020b)
March 2021 Online only Revised for Version 3.2 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Introduction
1

WLAN Toolbox Product Description . 1-2

About WLAN
2

What Is WLAN? . 2-2
Network Architecture . 2-2
WLAN Protocol Stack . 2-3
WLAN Message Exchange . 2-4
Physical Layer Evolution . 2-5

WLAN PPDU Structure . 2-9
Physical Layer Protocol Data Unit . 2-9

Packet Size and Duration Dependencies . 2-29

WLAN Radio Frequency Channels . 2-35

Acknowledgments . 2-37

Tutorials
3

Mapping 802.11 Standards to WLAN Toolbox Configuration Objects 3-2

Create Configuration Objects . 3-3
Create HE MU Configuration Object . 3-3
Create Single User HE Configuration Object . 3-4
Create DMG Configuration Object . 3-6
Create S1G Configuration Object . 3-7
Create VHT Configuration Object . 3-10
Create HT Configuration Object . 3-12
Create Non-HT Configuration Object . 3-13

HE MU Transmission . 3-15
Transmission Mode Options . 3-15
Allocation Index . 3-15

iii

Contents

Waveform Generation . 3-22
Generate WLAN Waveforms . 3-24
Waveforms of Individual PPDU Fields . 3-32

App-Based WLAN Waveform Generation . 3-34

Generate and Parse WLAN MAC Frames . 3-39

WLAN Channel Models . 3-41

Packet Recovery . 3-51
VHT Packet Recovery . 3-51
HT Packet Recovery . 3-55
Non-HT Packet Recovery . 3-58

Transmit-Receive Chain . 3-62
Transmit Processing Chain . 3-62
Receiver Processing Chain . 3-65

iv Contents

Introduction

1

WLAN Toolbox Product Description
Simulate, analyze, and test WLAN communications systems

WLAN Toolbox provides standards-compliant functions for the design, simulation, analysis, and
testing of wireless LAN communications systems. It includes configurable physical layer waveforms
for IEEE® 802.11ax/ac/ad/ah and 802.11b/a/g/n/j/p standards. It also provides transmitter, channel
modeling, and receiver operations, including channel coding (BCC and LDPC), modulation (OFDM,
DSSS, and CCK), spatial stream mapping, channel models (TGay, TGax, TGac, TGah, and TGn), and
MIMO receivers.

The toolbox provides reference designs to help you perform baseband link-level simulations and
multi-node system-level simulations. You can generate and parse common MAC frames. You can also
perform signal measurements such as channel power, spectrum mask, and occupied bandwidth, and
create test benches for the end-to-end simulation of WLAN communications links.

You can study the effects of RF designs and interference on system performance. Using WLAN
Toolbox with RF instruments or hardware support packages, you can connect your transmitter and
receiver models to radio devices and verify your designs via over-the-air transmission and reception.

1 Introduction

1-2

About WLAN

• “What Is WLAN?” on page 2-2
• “WLAN PPDU Structure” on page 2-9
• “Packet Size and Duration Dependencies” on page 2-29
• “WLAN Radio Frequency Channels” on page 2-35
• “Acknowledgments” on page 2-37

2

What Is WLAN?
In this section...
“Network Architecture” on page 2-2
“WLAN Protocol Stack” on page 2-3
“WLAN Message Exchange” on page 2-4
“Physical Layer Evolution” on page 2-5

In general, a wireless local area network (WLAN) refers to a wireless computer network. More
commonly, WLAN is equated with the implementation specified by the IEEE 802.11™ group of
standards and branded as Wi-Fi® by the Wi-Fi Alliance. The Wi-Fi Alliance certifies interoperability
between IEEE 802.11 devices from different manufacturers. With WLAN Toolbox, you can model
IEEE 802.11 standardized implementations of the WLAN physical (PHY) and medium access control
(MAC) layers. You can also explore variations on implementations for future evolution of the standard.

Network Architecture
IEEE 802.11 defines the network architectures. In IEEE 802.11, a group of stations (STAs) within a
defined coverage area and with appropriate association to each other form a basic service set (BSS).
The BSS is a basic building block for 802.11 network architecture. A basic service area (BSA) defines
an area containing STAs within a BSS. STAs can be associated in overlapping BSSs. In terms of
mobility, STAs are either fixed, portable, or mobile. Any compliant STA can serve as an access point
(AP).

This figure depicts WLAN components and network architectures built up from BSSs.

2 About WLAN

2-2

• Independent BSS (IBSS) describes STAs communicating directly with one another in an ad-hoc
fashion. An IBSS has no connection to the wired network.

• Infrastructure BSS describes STAs associated with a central STA that manages the BSS. The
central STA is referred to as an access point (AP). This deployment is commonly used in home,
office, and hotspot network installations. Generally speaking, the AP connects wirelessly with
associated STAs and is wired to the Internet. This connection enables associated STAs to
communicate beyond the local BSS. The APs also wirelessly serve STAs in a BSA, providing
internet connectivity for those STAs.

• Distributed systems (DS) interconnect infrastructure BSSs via their APs. Typically the DS
backbone is an 802.3 Ethernet LAN.

• Extended service set (ESS) describes a set of infrastructure BSSs interconnected by a DS. In an
ESS, APs communicate among themselves to forward traffic from one BSS to another and to
facilitate the movement of mobile station from one BSS to another.

WLAN Protocol Stack
The interworking reference model shown here includes a subset of the network components
associated with the data link layer (DLL) and physical layer (PHY). Section 4.9.2 of [2] describes the
interworking reference model for 802.11. The medium access control (MAC) is a sublayer of the DLL.

The 802.11 standards focus on the MAC and PHY as a whole. WLAN Toolbox functionality focuses on
the physical-medium-dependent (PMD) and physical layer convergence procedure (PLCP) sublayers
of the PHY, the MAC sublayer, and their interfaces.

 What Is WLAN?

2-3

WLAN Message Exchange
Data and control information messages are exchanged between layers of the protocol stack within an
individual STA and between peer layers in communicating STAs.

• Data and control information exchanged between peer STA layers are protocol information
transfers. See (A-)MPDU and PPDU in the figure.

• Data and control information exchanged between layers within an STA are service information
transfers. See MSDU and PSDU in the figure.

WLAN Toolbox functionality focuses on MAC and PHY implementations. Specifically, the toolbox
models the exchange of PPDUs between PHY peers, and the exchange of MPDUs or A-MPDUs
between MAC peers. Messages exchanged between protocol stack layers are briefly described here.
For more information on these messages, see [2].

Message Description
MSDU — MAC service data unit Messages that transfer information between the

logical link control (LLC) layer and the MAC layer
within an STA

MPDU or A-MPDU — MAC protocol data unit or
aggregated MAC protocol data unit

Messages that transfer information between MAC
layer peers in communicating STAs

PSDU — PLCP service data unit Messages that transfer information between the
MAC and PHY layers within an STA

PPDU — PLCP protocol data unit Messages that transfer information between PHY
layer peers in communicating STAs

2 About WLAN

2-4

This figure shows the distinction between these WLAN message data units for a nonaggregated MAC
frame.

Note In reference to PSDU, the terms PLCP SDU and PHY SDU appear in the 802.11 standard. PLCP
is the physical layer convergence procedure sublayer of the PHY. No distinction is made when the
terms are used between layers.

Physical Layer Evolution
The IEEE 802.11 standardized implementation of WLAN has evolved since its first release in 1997.
Today, it is deployed worldwide in unlicensed regions of the radio frequency spectrum. Since the first
release, the 802.11 standard has progressed to include several physical layer implementations and
has ensured backward compatibility with legacy releases. Over time, the maximum achievable
transmission data rate has grown from 1 megabit per second (Mbps) to nearly 7 gigabit per second
(Gbps).

WLAN Toolbox provides native support for the various 802.11 standard versions listed here. The
toolbox focuses on the PHY and MAC layers, and enables adaptation of standards-based functionality
to explore custom implementations.

Standard Release
Year

Modulatio
n

Base
Frequency
(GHz)

Bandwidth
(MHz)

Maximum
Throughpu
t (Mbps)

Antenna
Scheme

PPDU
Format

802.11 1997 DSSS 2.4 11 2 SISO non-HT
802.11b™ 1999 HR/

DSSS/CCK
2.4 11 11 SISO non-HT

802.11a™ 1999 OFDM 5 5, 10, 20 54 SISO non-HT
802.11g™ 2003 802.11b and 802.11a @ 2.4 GHz
802.11j™ 2004 OFDM 4.9 and 5 10, 20 27 SISO non-HT

 What Is WLAN?

2-5

Standard Release
Year

Modulatio
n

Base
Frequency
(GHz)

Bandwidth
(MHz)

Maximum
Throughpu
t (Mbps)

Antenna
Scheme

PPDU
Format

802.11n™
(Wi-Fi 4)

2009 OFDM 2.4 and 5 20, 40 < 600 MIMO, up
to four
streams

HT

802.11p™ 2010 OFDM 5 5, 10 27 SISO non-HT
802.11ad™ 2012 SC/OFDM 60 GHz 1760 (SC),

2640
(OFDM)

< 7000 MIMO
single
stream with
beamformin
g

DMG

802.11ac™
(Wi-Fi 5)

2013 OFDM 5 20, 40, 80,
160, 80+80

< 7000 DL MU-
MIMO up to
eight
streams

VHT

802.11ah™ 2016 OFDM < 1 1, 2, 4, 8,
16

346 DL MU-
MIMO up to
four
streams

S1G

802.11ax™
(Wi-Fi 6)

2020
(anticipated
)

OFDMA 2.4 and 5 20, 40, 80,
160, 80+80

< 10,000 UL and DL
MU-MIMO
up to eight
streams

HE

Deployment and commercial uptake grew with the increased data rates offered by 802.11b direct
sequence spread spectrum (DSSS) with complementary code keying (CCK). At that time, companies
began offering 802.11b products and systems for WLAN.

The 802.11a amendment increased data rates by introducing an orthogonal frequency division
multiplexing (OFDM) physical layer. However, OFDM was deployed at only 5 GHz, so uptake was
slow. A short time later, the Federal Communications Commission (FCC) allowed the use of OFDM at
2.4 GHz.

The adoption of the 802.11g amendment offered the opportunity to operate the PHY defined by
802.11a at 2.4 GHz, with backward compatibility to the 802.11b PHY.

With 802.11n, a data rate increase came by way of widened channel bandwidth and allowance of up
to four input/output streams.

For 802.11ac, wider channels and up to eight input/output streams offers higher maximum
throughputs. This increased throughput capability enables users to stream video to mobile devices in
the home or at public mobile hot spots.

The 802.11ad amendment specifies operation in the 60-GHz band.

The 802.11ah amendment uses sub-1-GHz frequencies (unlicensed 900-MHz bands) to provide
extended range, and has low energy consumption to support the concepts involving the Internet of
Things (IoT).

The 802.11ax amendment introduces orthogonal frequency-division multiple access (OFDMA) to
improve overall spectral efficiency, and higher-order 1024-point quadrature amplitude modulation

2 About WLAN

2-6

(1024-QAM) support for increased throughput. The demand for bandwidth continues to grow and the
IEEE 802.11 working groups continue to advance standards to raise the throughput ceiling.

For the history of IEEE 802.11 and to monitor working group activities, consult the IEEE website.

References
[1] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

[2] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

[3] IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016 as amended by IEEE Std
802.11ai™-2016). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

[4] IEEE STD 802.11ac-2013 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std
802.11ae™-2012, IEEE Std 802.11a™-2012, and IEEE Std 802.11ad-2012). “Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4:
Enhancements for Very High Throughput Operation in Bands below 6 GHz.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

[5] IEEE STD 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std
802.11ae™-2012 and IEEE Std 802.11a™-2012). “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4: Enhancements for
Very High Throughput Operation in Bands below 6 GHz.” IEEE Standard for Information
technology — Telecommunications and information exchange between systems. Local and
metropolitan area networks — Specific requirements.

[6] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013.

See Also

Related Examples
• “Create Configuration Objects” on page 3-3
• “Waveform Generation” on page 3-22
• “WLAN Channel Models” on page 3-41
• “Packet Recovery” on page 3-51
• “WLAN PPDU Structure” on page 2-9

 What Is WLAN?

2-7

External Websites
• https://standards.ieee.org/

2 About WLAN

2-8

https://standards.ieee.org/

WLAN PPDU Structure

Physical Layer Protocol Data Unit
IEEE 802.111 is a packet-based protocol. Each physical layer protocol data unit (PPDU) contains
preamble and data fields. The preamble field contains the transmission vector format information.
The data field contains the user payload and higher layer headers, such as medium access control
(MAC) fields and cyclic redundancy check (CRC). The transmission vector format and the PPDU
structure vary between 802.11 versions. The transmission vector (TXVECTOR) format parameter is
classified as:

• HE to specify a high-efficiency (HE) physical layer (PHY) implementation.

• HE refers to fields formatted for association with 802.11ax data. Reference [2] defines and
describes the HE PHY layer and PPDU.

• For HE, the TXVECTOR parameters, as defined in Table 27-1 of [2], determine the structure of
PPDUs transmitted by an HE STA.

• DMG to specify a directional multi-gigabit (DMG) PHY implementation.

• DMG refers to preamble fields formatted for association with 802.11ad data. Section 20 of [1]
define and describe the DMG PHY layer and PPDU.

• For DMG, the TXVECTOR parameters, as defined in Table 20-1 of [1], determines the structure
of PPDUs transmitted by a DMG STA. For a DMG STA, the MCS parameter determines the
overall structure of the DMG PPDU.

• S1G to specify a sub-1-GHz (S1G) PHY implementation.

• S1G refers to preamble fields formatted for association with 802.11ah data. Reference [3]
defines and describes the S1G PHY layer and PPDU.

• For S1G, the TXVECTOR parameters, as defined in Table 23-1 of [3], determines the structure
of PPDUs transmitted by an S1G STA. For an S1G STA, the FORMAT parameter determines the
overall structure of the S1G PPDU.

• VHT to specify a very-high-throughput (VHT) PHY implementation.

• VHT refers to preamble fields formatted for association with 802.11ac data. Section 21 of [1]
defines and describes the VHT PHY layer and PPDU.

• For VHT, the TXVECTOR parameters, as defined in Table 21-1 of [1], determine the structure of
PPDUs transmitted by a VHT STA. For a VHT STA, the FORMAT parameter determines the
overall structure of the PPDU and enables:

• Non-HT format (NON_HT), based on Section 17 and including non-HT duplicate format.
• HT-mixed format (HT_MF), as specified in Section 19.
• HT-greenfield format (HT_GF), as specified in Section 19. WLAN Toolbox does not support

HT_GF format.
• VHT format (VHT), as specified in Section 21. The VHT format PPDUs contain a preamble

compatible with Section 17 and Section 19 STAs. The non-VHT portions of the VHT
preamble (the parts that precede the VHT-SIG-A field) are defined to enable decoding of the
PPDU by VHT STAs.

1. IEEE Std 802.11-2016 Adapted and reprinted with permission from IEEE. Copyright IEEE 2016. All rights reserved.

 WLAN PPDU Structure

2-9

• HT to specify a high-throughput (HT) PHY implementation.

• HT refers to preamble fields formatted for association with 802.11n data. Section 19 of [1]
defines and describes the HT PHY layer and PPDU. The standard defines two HT formats:

• HT_MF indicates the HT-mixed format and contains a preamble compatible with HT and
non-HT receivers. Support for HT-mixed format is mandatory.

• • HT_GF indicates the HT-greenfield format and does not contain a non-HT compatible
part. WLAN Toolbox does not support HT_GF format.

• non-HT to specify a PHY implementation that is not HT and is not VHT.

• Non-HT refers to preamble fields formatted for association with pre-802.11n data. Section 17
of [1] defines and describes the OFDM PHY layer and PPDU for non-HT transmission. In
addition to supporting non-HT synchronization, the non-HT preamble fields are used in support
of HT and VHT synchronization.

The table shows 802.11 versions that the toolbox supports, along with the supported TXVECTOR
options and associated modulation formats.

802.11 Version Transmission Vector
Format

Modulation Format Bandwidths/MHz

802.11b non-HT DSSS/CCK 11
802.11a non-HT OFDM only 5, 10, 20
802.11j non-HT OFDM only 10
802.11p non-HT OFDM only 5, 10
802.11g non-HT OFDM 20

non-HT DSSS/CCK 11
802.11n (Wi-Fi 4) HT_MF, Non-HT OFDM only 20, 40
802.11ac (Wi-Fi 5) VHT, HT_MF, Non-HT OFDM only 20, 40, 80, 160
802.11ah S1G OFDM only 1, 2, 4, 8, 16
802.11ad DMG Single Carrier and

OFDM
2640

802.11ax (Wi-Fi 6) HE OFDMA 20, 40, 80, 160

WLAN Toolbox configuration objects define the properties that enable creation of PPDUs and
waveforms for the specified 802.11 transmission format. See wlanHEMUConfig, wlanHESUConfig,
wlanDMGConfig, wlanS1GConfig, wlanVHTConfig, wlanHTConfig, and wlanNonHTConfig.

HE PPDU Field Structure

In HE, there are four transmission modes supported. The field structure for HE PPDUs consists of
preamble and data portions. The legacy preamble fields (L-STF, L-LTF, and L-SIG) are common to all
four HE transmission modes and with the VHT, HT, and non-HT format preambles.

HE preamble fields include additional format-specific signaling fields. Each format defines a data field
for transmission of user payload data.

2 About WLAN

2-10

PPDU Field Abbreviation Description
L-STF Non-HT Short Training field
L-LTF Non-HT Long Training field
L-SIG Non-HT Signal field
RL-SIG Repeated Non-HT Signal field
HE-SIG-A HE Signal A field
HE-SIG-B HE Signal B field
HE-STF HE Short Training field
HE-LTF HE Long Training field
HE-Data Data field carrying the PSDUs
PE Packet Extension field

The RL-SIG, HE-SIG-A, HE-STF, HE-LTF, and PE fields are present in all HE PPDU formats. The HE-
SIG-B field is present only in the HE MU PPDU. For more information, see Section 27.3.4 of [2].

DMG Format PPDU Field Structure

In DMG, there are three physical layer (PHY) modulation schemes supported: control, single carrier,
and OFDM.

 WLAN PPDU Structure

2-11

The single-carrier chip timing, TC = 1/FC = 0.57 ns. For more information, see Waveform Sampling
Rate on the wlanWaveformGenerator function reference page.

The supported DMG format PPDU field structures each contain these fields:

• The preamble contains a short training field (STF) and channel estimation field (CEF). The
preamble is used for packet detection, AGC, frequency offset estimation, synchronization,
indication of modulation type (Control, SC, or OFDM), and channel estimation. The format of the
preamble is common to the Control, SC, and OFDM PHY packets.

• The STF is composed of Golay Ga sequences as specified in section 20.3.6.2 of [1].
• The CEF is composed of Golay Gu and Gv sequences as specified in section 20.3.6.2 of [1].

• When the header and data fields of the packet are modulated using a single carrier (control
PHY and SC PHY), the Golay sequencing for the CEF waveform is shown in Figure 20-6 of
[1].

• When the header and data fields of the packet are modulated using OFDM (OFDM PHY),
the Golay sequencing for the CEF waveform is shown in Figure 20-7 of [1].

• The header field is decoded by the receiver to determine transmission parameters.
• The data field is variable in length. It carries the user data payload.
• The training fields (AGC and TRN-R/T subfields) are optional. They can be included to refine

beamforming.

Section 20.3 of [1] specifies the common aspects of the DMG PPDU packet structure. The PHY
modulation-specific aspects of the packet structure are specified in these sections:

2 About WLAN

2-12

• The DMG control PHY packet structure is specified in Section 20.4.
• The DMG OFDM PHY packet structure is specified in Section 20.5.
• The DMG SC PHY packet structure is specified in Section 20.6.

S1G Format PPDU Field Structure

In S1G, there are three transmission modes:

• ≥2 MHz long preamble mode
• ≥2 MHz short preamble mode
• 1 MHz mode

Each transmission mode has a specific PPDU preamble structure:

• An S1G ≥2 MHz long preamble mode PPDU supports single-user and multi-user transmissions.
The long preamble PPDU consists of two portions; the omni-directional portion and the beam-
changeable portion.

• The omni-directional portion is transmitted to all users without beamforming. It consists of
three fields:

• The short training field (STF) is used for coarse synchronization.
• The long training field (LTF1) is used for fine synchronization and initial channel estimation.
• The signal A field (SIG-A) is decoded by the receiver to determine transmission parameters

relevant to all users.
• The data portion can be beamformed to each user. It consists of four fields:

• The beamformed short training field (D-STF) is used by the receiver for automatic gain
control.

• The beamformed long training fields (D-LTF-N) are used for MIMO channel estimation.
• The signal B field (SIG-B) in a multi-user transmission, signals the MCS for each user. In a

single-user transmission, the MCS is signaled in the SIG-A field of the omni-directional
portion of the preamble. Therefore, in a single-user transmission the SIG-B symbol
transmitted is an exact repetition of the first D-LTF. This repetition allows for improved
channel estimation.

 WLAN PPDU Structure

2-13

• The data field is variable in length. It carries the user data payload.
• An S1G ≥2 MHz short preamble mode PPDU supports single-user transmissions. All fields in the

PPDU can be beamformed.

The PPDU consists of these five fields:

• The short training field (STF) is used for coarse synchronization.
• The first long training field (LTF1) is used for fine synchronization and initial channel

estimation.
• The signaling field (SIG) is decoded by the receiver to determine transmission parameters.
• The subsequent long training fields (LTF2-N) are used for MIMO channel estimation.

NSYMBOLS = 1 per subsequent LTF
• The data field is variable in length. It carries the user data payload.

• An S1G 1 MHz mode PPDU supports single-user transmissions. It is composed of the same five
fields as the S1G ≥2 MHz short preamble mode PPDU and all fields can be beamformed. An S1G 1
MHz mode PPDU has longer STF, LTF1, and SIG fields, so this mode can achieve sensitivity that is
similar to the S1G ≥2 MHz short-preamble mode transmissions.

VHT, HT-Mixed, and Non-HT Format PPDU Field Structures

The field structure for VHT, HT, and non-HT PPDUs consist of preamble and data portions. The legacy
preamble fields (L-STF, L-LTF, and L-SIG) are common to VHT, HT, and non-HT format preambles.

2 About WLAN

2-14

VHT and HT format preamble fields include additional format-specific training and signaling fields.
Each format defines a data field for transmission of user payload data.

PPDU Field Abbreviation Description
L-STF Non-HT Short Training field
L-LTF Non-HT Long Training field
L-SIG Non-HT SIGNAL field
HT-SIG HT SIGNAL field
HT-STF HT Short Training field
HT-LTF HT Long Training field, multiple HT-LTFs are

transmitted as indicated by the MCS
VHT-SIG-A VHT Signal A field
VHT-STF VHT Short Training field
VHT-LTF VHT Long Training field
VHT-SIG-B VHT Signal B field
Data VHT, HT, and non-HT Data fields include the

service bits, PSDU, tail bits, and pad bits

For more information, see section 19.3.2 of [1].

 WLAN PPDU Structure

2-15

Non-HT (Legacy) Short Training Field

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy preamble.
The L-STF is a component of VHT, HT, and non-HT PPDUs.

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period (TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT / 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet detection, for
coarse frequency correction, and for setting the AGC. The sequence uses 12 of the 52 subcarriers
that are available per 20 MHz channel bandwidth segment. For 5 MHz, 10 MHz, and 20 MHz
bandwidths, the number of channel bandwidths segments is 1.

Non-HT (Legacy) Long Training Field

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy preamble.
The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, fine frequency offset estimation, and fine symbol timing offset estimation rely on
the L-LTF.

2 About WLAN

2-16

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training symbols (C1 and
C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

Channel
Bandwidth (MHz)

Subcarrier
Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 + 2
× TFFT)

20, 40, 80, and 160 312.5 3.2 μs 1.6 μs 8 μs
10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Non-HT (Legacy) Signal Field

The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy preamble. It
consists of 24 bits that contain rate, length, and parity information. The L-SIG is a component of HE,
VHT, HT, and non-HT PPDUs. It is transmitted using BPSK modulation with rate 1/2 binary
convolutional coding (BCC).

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

 WLAN PPDU Structure

2-17

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI + TF
FT)

20, 40, 80, and 160 312.5 3.2 μs 0.8 μs 4 μs
10 156.25 6.4 μs 1.6 μs 8 μs
5 78.125 12.8 μs 3.2 μs 16 μs

The L-SIG contains packet information for the received configuration,

• Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT format.

Rate (bits 0–
3)

Modulation Coding rate
(R)

Data Rate (Mb/s)
20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth
1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12 6
1011 16-QAM 3/4 36 18 9
0001 64-QAM 2/3 48 24 12
0011 64-QAM 3/4 54 27 13.5

For HT and VHT formats, the L-SIG rate bits are set to '1 1 0 1'. Data rate information for HT
and VHT formats is signaled in format-specific signaling fields.

• Bit 4 is reserved for future use.
• Bits 5 through 16:

• For non-HT, specify the data length (amount of data transmitted in octets) as described in Table
17-1 and section 10.26.4 IEEE Std 802.11-2016.

• For HT-mixed, specify the transmission time as described in sections 19.3.9.3.5 and 10.26.4 of
IEEE Std 802.11-2016.

• For VHT, specify the transmission time as described in section 21.3.8.2.4 of IEEE Std
802.11-2016.

2 About WLAN

2-18

• Bit 17 has the even parity of bits 0 through 16.
• Bits 18 through 23 contain all zeros for the signal tail bits.

Note Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA, wlanVHTSIGB) formats
provide data rate and configuration information for those formats.

• For the HT-mixed format, section 19.3.9.4.3 of IEEE Std 802.11-2016 describes HT-SIG bit
settings.

• For the VHT format, sections 21.3.8.3.3 and 21.3.8.3.6 of IEEE Std 802.11-2016 describe bit
settings for the VHT-SIG-A and VHT-SIG-B fields, respectively.

Non-HT Data Field

The non-high throughput Data (non-HT Data) field is used to transmit MAC frames and is composed
of a service field, a PSDU, tail bits, and pad bits.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU).
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for the single

encoding stream.
• Pad Bits — Variable-length field required to ensure that the non-HT data field contains an integer

number of symbols.

Processing of an 802.11a data field is defined in section 17.3.5 of [3].

The six tail bits are set to zero after a 127-bit scrambling sequence has been applied to the full data
field. The receiver uses the first seven bits of the service field to determine the initial state of the
scrambler. Rate 1/2 BCC encoding is performed on the scrambled data. The zeroed tail bits cause the
BCC encoder to return to a zero state. Puncturing is applied as needed for the selected rate.

The coded data is grouped into several bits per symbol, and two permutations of block interleaving
are applied to each group of data. The groups of bits are then modulated to the selected rate (BPSK,
QPSK, 16-QAM, or 64-QAM) and the complex symbols are then mapped onto corresponding

 WLAN PPDU Structure

2-19

subcarriers. For each symbol, the pilot subcarriers are inserted. An IFFT is used to transform each
symbol group to the time domain and the cyclic prefix is prepended.

The final processing preceding DAC up-conversion to RF and the power amplifier is to apply a pulse
shaping filter on the data to smooth transitions between symbols. The standard provides an example
pulse shaping function but does not specifically require one.

High Throughput Signal Field

The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-STF and is part of
the HT-mixed format preamble. It is composed of two symbols, HT-SIG1 and HT-SIG2.

HT-SIG carries information used to decode the HT packet, including the MCS, packet length, FEC
coding type, guard interval, number of extension spatial streams, and whether there is payload
aggregation. The HT-SIG symbols are also used for auto-detection between HT-mixed format and
legacy OFDM packets.

For a detailed description of the HT-SIG field, see Section 19.3.9.4.3 of IEEE Std 802.11-2016.

2 About WLAN

2-20

High Throughput Short Training Field

The high throughput short training field (HT-STF) is located between the HT-SIG and HT-LTF fields of
an HT-mixed packet. The HT-STF is 4 μs in length and is used to improve automatic gain control
estimation for a MIMO system. For a 20 MHz transmission, the frequency sequence used to construct
the HT-STF is identical to that of the L-STF. For a 40 MHz transmission, the upper subcarriers of the
HT-STF are constructed from a frequency-shifted and phase-rotated version of the L-STF.

High Throughput Long Training Fields

The high throughput long training field (HT-LTF) is located between the HT-STF and data field of an
HT-mixed packet.

As described in Section 19.3.9.4.6 of IEEE Std 802.11-2016, the receiver can use the HT-LTF to
estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC is applied, the
STBC encoder outputs) and the receive chains. The HT-LTF portion has one or two parts. The first
part consists of one, two, or four HT-LTFs that are necessary for demodulation of the HT-Data portion
of the PPDU. These HT-LTFs are referred to as HT-DLTFs. The optional second part consists of zero,
one, two, or four HT-LTFs that can be used to sound extra spatial dimensions of the MIMO channel
not utilized by the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT
long training symbol is 4 μs. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 19-12, 19-13 and 90-14 from IEEE Std 802.11-2012 are reproduced here.

NSTS Determination NHTDLTF Determination NHTELTF Determination
Table 19-12 defines the number
of space-time streams (NSTS)
based on the number of spatial
streams (NSS) from the MCS and
the STBC field.

Table 19-13 defines the number
of HT-DLTFs required for the
NSTS.

Table 19-14 defines the number
of HT-ELTFs required for the
number of extension spatial
streams (NESS). NESS is defined
in HT-SIG2.

 WLAN PPDU Structure

2-21

NSTS Determination NHTDLTF Determination NHTELTF Determination
NSS from
MCS

STBC
field

NSTS

1 0 1
1 1 2
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

NSTS NHTDLTF

1 1
2 2
3 4
4 4

NESS NHTELTF

0 0
1 1
2 2
3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.
• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT Data Field

The HT-Data field follows the last HT-long training field (HT-LTF) of an HT-mixed packet.

The HT-Data field is carries one or more frames from the medium access control (MAC) layer and
consists of four subfields.

• Service — Contains 16 zeros to initialize the data scrambler
• PSDU — Variable-length field containing a PLCP service data unit (PSDU)
• Tail — Contains six zeros for each encoding stream, required to terminate a convolutional code

2 About WLAN

2-22

• Pad Bits — Variable-length field required to ensure that the HT-Data field consists of an integer
number of symbols

Very High Throughput SIG-A Field

The very high throughput signal A (VHT-SIG-A) field contains information required to interpret VHT
format packets. Similar to the non-HT signal (L-SIG) field for the non-HT OFDM format, this field
stores the actual rate value, channel coding, guard interval, MIMO scheme, and other configuration
details for the VHT format packet. Unlike the HT-SIG field, this field does not store the packet length
information. Packet length information is derived from L-SIG and is captured in the VHT-SIG-B field
for the VHT format.

For a detailed description of the VHT-SIG-A field, see section 21.3.8.3.3 of IEEE Std 802.11-2016. The
VHT-SIG-A field consists of two symbols: VHT-SIG-A1 and VHT-SIG-A2. These symbols are located
between the L-SIG and the VHT-STF portion of the VHT format PPDU.

The VHT-SIG-A field includes these components. The bit field structures for VHT-SIG-A1 and VHT-SIG-
A2 vary for single user or multiuser transmissions.

• BW — A two-bit field that indicates 0 for 20 MHz, 1 for 40 MHz, 2 for 80 MHz, or 3 for 160 MHz.
• STBC — A bit that indicates the presence of space-time block coding.

 WLAN PPDU Structure

2-23

• Group ID — A six-bit field that indicates the group and user position assigned to a STA.
• NSTS — A three-bit field for a single user or 4 three-bit fields for a multiuser scenario, that

indicates the number of space-time streams per user.
• Partial AID — An identifier that combines the association ID and the BSSID.
• TXOP_PS_NOT_ALLOWED — An indicator bit that shows if client devices are allowed to enter

dose state. This bit is set to false when the VHT-SIG-A structure is populated, indicating that the
client device is allowed to enter dose state.

• Short GI — A bit that indicates use of the 400 ns guard interval.
• Short GI NSYM Disambiguation — A bit that indicates if an extra symbol is required when the

short GI is used.
• SU/MU[0] Coding — A bit field that indicates if convolutional or LDPC coding is used for a single

user or for user MU[0] in a multiuser scenario.
• LDPC Extra OFDM Symbol — A bit that indicates if an extra OFDM symbol is required to

transmit the data field.
• MCS — A four-bit field.

• For a single user scenario, it indicates the modulation and coding scheme used.
• For a multiuser scenario, it indicates use of convolutional or LDPC coding and the MCS setting

is conveyed in the VHT-SIG-B field.
• Beamformed — An indicator bit set to 1 when a beamforming matrix is applied to the

transmission.
• CRC — An eight-bit field used to detect errors in the VHT-SIG-A transmission.
• Tail — A six-bit field used to terminate the convolutional code.

Very High Throughput Short Training Field

The very high throughput short training field (VHT-STF) is a single OFDM symbol (4 μs in length) that
is used to improve automatic gain control estimation in a MIMO transmission. It is located between
the VHT-SIG-A and VHT-LTF portions of the VHT packet.

The frequency domain sequence used to construct the VHT-STF for a 20 MHz transmission is
identical to the L-STF sequence. Duplicate L-STF sequences are frequency shifted and phase rotated
to support VHT transmissions for the 40 MHz, 80 MHz, and 160 MHz channel bandwidths. As such,
the L-STF and HT-STF are subsets of the VHT-STF.

For a detailed description of the VHT-STF, see section 21.3.8.3.4 of IEEE Std 802.11-2016.

Very High Throughput Long Training Fields

The very high throughput long training field (VHT-LTF) is located between the VHT-STF and VHT-SIG-
B portion of the VHT packet.

2 About WLAN

2-24

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF includes one VHT
long training symbol for each spatial stream indicated by the selected MCS. Each symbol is 4 μs long.
A maximum of eight symbols are permitted in the VHT-LTF.

For a detailed description of the VHT-LTF, see section 21.3.8.3.5 of IEEE Std 802.11-2016.

Very High Throughput SIG-B Field

The very high throughput signal B field (VHT-SIG-B) is used for multiuser scenario to set up the data
rate and to fine-tune MIMO reception. It is modulated using MCS 0 and is transmitted in a single
OFDM symbol.

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF and the data
portion of the VHT format PPDU.

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-MPDU length
value per user. For a detailed description of the VHT-SIG-B field, see section 21.3.8.3.6 of IEEE Std
802.11-2016. The number of bits in the VHT-SIG-B field varies with the channel bandwidth and the
assignment depends on whether single user or multiuser scenario in allocated. For single user
configurations, the same information is available in the L-SIG field but the VHT-SIG-B field is included
for continuity purposes.

 WLAN PPDU Structure

2-25

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descripti
on

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-SIG-B B0-15 (16) B0-16 (17) B0-18 (19) B0-16 (17) B0-18 (19) B0-20 (21) A variable-
length
field that
indicates
the size of
the data
payload in
four-byte
units. The
length of
the field
depends
on the
channel
bandwidth.

VHT-MCS B16-19 (4) B17-20 (4) B19-22 (4) N/A N/A N/A A four-bit
field that is
included
for
multiuser
scenarios
only.

Reserved N/A N/A N/A B17–19 (3) B19-20 (2) B21-22 (2) All ones
Tail B20-25 (6) B21-26 (6) B23-28 (6) B20-25 (6) B21-26 (6) B23-28 (6) Six zero-

bits used
to
terminate
the
convolutio
nal code.

Total #
bits

26 27 29 26 27 29

Bit field
repetition

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

For a null data packet (NDP), the VHT-SIG-B bits are set according to Table 21-15 of IEEE Std
802.11-2016.

2 About WLAN

2-26

VHT Data Field

The VHT-Data field carries one or more frames from the medium access control (MAC) layer. This
field follows the VHT-SIG-B field in a VHT PPDUs.

For a detailed description of the VHT-Data field, see section 21.3.10 of IEEE Std 802.11-2016. The
VHT Data field consists of four subfields.

• Service field — Contains a seven-bit scrambler initialization state, one bit reserved for future
considerations, and eight bits for the VHT-SIG-B cyclic redundancy check (CRC) field

• PSDU — Variable-length field containing a PLCP service data unit
• PHY Pad — Variable number of bits passed to the transmitter to create a complete OFDM symbol
• Tail — Bits required to terminate a convolutional code (not required when the transmission uses

LDPC channel coding)

References
[1] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

 WLAN PPDU Structure

2-27

[2] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

[3] IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016 as amended by IEEE Std
802.11ai™-2016). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

[4] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013.

See Also
“Waveform Generation” on page 3-22 | “What Is WLAN?” on page 2-2 | “Mapping 802.11 Standards
to WLAN Toolbox Configuration Objects” on page 3-2 | “HE MU Transmission” on page 3-15

2 About WLAN

2-28

Packet Size and Duration Dependencies
WLAN standards specify a maximum packet duration (TXTIME) for the various formats. The HE and
S1G formats additionally specify the maximum PSDU length (PSDU_LENGTH) and number of symbols
(NSYM). These WLAN properties are functions of transmission properties set in WLAN Toolbox
configuration objects. The settings of WLAN format-specific configuration objects are validated when
the object is used. Command-line feedback informs you when the configuration violates the packet
size or duration limits.

This table indicates relevant properties that help determine the packet duration and length for the
various WLAN formats. It also provides references to the IEEE standards for further details.

 Packet Size and Duration Dependencies

2-29

WLAN
Format

Length-Related Validation Relevant and Dependent Properties

HE TXTIME and PSDU_LENGTH require
validation.

TXTIME and PSDU_LENGTH are defined by
the equations in section 27.4.3 of [2].

As specified by aPPDUMaxTime and
aPSDUMaxLength in Table 27-53, the
maximum TXTIME is 5.484 ms and the
maximum PSDU_Length is 6,500,631 octets.

For single user HE and single user extended
range HE:

For PSDU_LENGTH:

1 ChannelBandwidth
2 NumSpaceTimeStreams
3 STBC
4 MCS
5 DCM
6 ChannelCoding
7 APEPLength

For TXTIME:

1 All the above PSDU_LENGTH
properties

2 ExtendedRange
3 GuardInterval
4 HELTFType
5 HighDoppler
6 MidamblePeriodictiy(he_1)

For multi-user HE:

The PSDU_LENGTH is different for each
user in the configuration, but the transmit
time is the same (like VHT). For
PSDU_LENGTH:

• Can vary per user:

1 User RU size is based on:

a AllocationIndex
b ChannelBandwidth, which is

derived from AllocationIndex
c Lower26ToneRU(he_2)

d Upper26ToneRU(he_2)

2 NumSpaceTimeStreams
3 MCS
4 DCM
5 ChannelCoding
6 APEPLength

2 About WLAN

2-30

WLAN
Format

Length-Related Validation Relevant and Dependent Properties

• Same for all users:

• STBC

For TXTIME:

1 The above PSDU_LENGTH properties
that can vary per user

2 GuardInterval
3 HELTFType
4 SIGBCompression(he_3)(he_4)

5 SIGBMCS
6 SIGBDCM
7 HighDoppler
8 MidamblePeriodictiy(he_1)

Notes:

(he_1) MidamblePeriodictiy is only relevant
when HighDoppler is true.

(he_2) Lower26ToneRU and Upper26ToneRU
are only relevant if the user for which the
PSDU_LENGTH is derived is allocated on
either of these RUs.

(he_3) If SIG-B compression is used, there is
common field in HE-SIG-B field that affects
the TXTIME computation.

(he_4) The SIGBCompression property is only
relevant when a full-band 20 MHz allocation
is specified.

DMG TXTIME requires validation.

TXTIME is defined by the equations in
section 20.12.3 of [1].

As specified by aPPDUMaxTime in Table
20-32, the maximum TXTIME is 2 ms.

1 MCS (dmg_1)

2 PSDULength
3 TrainingLength (dmg_1)

4 PacketType (dmg_1)

5 BeamTrackingRequest (dmg_1)

Notes:

(dmg_1) The property helps determine whether
the packet is a beam refinement protocol
(BRP) packet containing training fields or if
it is a general packet signaling the number
of fields to append. For more information,
see [1]

 Packet Size and Duration Dependencies

2-31

WLAN
Format

Length-Related Validation Relevant and Dependent Properties

S1G TXTIME, PSDU_LENGTH, and NSYM require
validation.

The equations for all three of these
characteristics are in section 24.4.3 of [3],
and the maximum TXTIME and
PSDU_LENGTH are defined in Table 24-37.

In Table 24-37:

• As specified by aPPDUMaxTime, the
maximum TXTIME is 27.92 ms. This
TXTIME is the maximum PPDU duration
for an S1G_1M PPDU with:

• A bandwidth of 1 MHz
• S1G MCS set to 10
• One spatial stream, limited by a

PSDU length of 511 octets.
• As specified by aPPDUMaxLength, the

maximum PSDU_LENGTH is 797,159
octets. This PSDU length is the
maximum length in octets for an S1G SU
PPDU with:

• A bandwidth of 16 MHz
• S1G-MCS set to 9
• Four spatial streams, limited by 511

data symbols supported by the
Length field in the S1G SIG field,
excluding the SERVICE field and tail
bits.

• The maximum NSYM is 511.

For TXTIME, the relevant properties are:

1 ChannelBandwidth
2 STBC (s1g_1)

3 GuardInterval
4 ChannelCoding (MU)

5 APEPLength (MU)

6 PSDULength – This property is read-
only. When undefined, PSDULength is
returned as empty of size 1×0. An
empty return can happen when the set
of property values for the object define
an invalid state. (MU)

7 MCS (MU)

8 NumSpaceTimeStreams (MU)

9 NumUsers

For PSDU_LENGTH and NSYM, the relevant
properties are:

1 ChannelBandwidth
2 STBC (s1g_1)

3 ChannelCoding (MU)

4 APEPLength (MU)

5 PSDULength – This property is read-
only. When undefined, PSDULength is
returned as empty, []. An empty return
can happen when the set of property
values for the object define an invalid
state. (MU)

6 MCS (MU)

7 NumSpaceTimeStreams (MU)

8 NumUsers

Notes:

(s1g_1) The property is relevant only when
NumUsers = 1.

(MU) The property has multiple values for
multi-user operation.

2 About WLAN

2-32

WLAN
Format

Length-Related Validation Relevant and Dependent Properties

VHT TXTIME requires validation.

TXTIME is defined by the equations in
section 21.4.3 in [1].

As specified by aPPDUMaxTime in Table
21-29, the maximum TXTIME is 5.484 ms.

1 ChannelBandwidth
2 STBC (vht_1)

3 GuardInterval
4 ChannelCoding (MU)

5 APEPLength (MU)

6 PSDULength – This property is read
only. When undefined, it is returned as
an empty of size 1×0.(MU)

7 MCS (MU)

8 NumSpaceTimeStreams (MU)

9 NumUsers

Notes:

(vht_1) The property is relevant only when
NumUsers = 1.

(MU) The property has multiple values for
multi-user operation.

HT TXTIME requires validation.

TXTIME is defined by the equations in
section 19.4.3 of [1].

As specified in Table 9-19, the maximum
TXTIME for HT mixed PPDUs is 5.484 ms.

1 ChannelBandwidth
2 GuardInterval
3 ChannelCoding
4 PSDULength
5 MCS
6 NumSpaceTimeStreams
7 NumExtensionStreams

non-HT TXTIME requires validation.

TXTIME for OFDM modulation is defined by
the equations in section 17.4.3 of [1].

Based on equation (17–29) and a valid
combination of property settings, the
maximum TXTIME is 21.936 ms.

1 Modulation (non-ht_1)

2 PSDULength
3 MCS (non-ht_1)

4 DateRate (non-ht_1)

Notes:

(non-ht_1) DataRate or MCS might be relevant
depending on the Modulation setting.

References
[1] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

 Packet Size and Duration Dependencies

2-33

[2] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

[3] IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016 as amended by IEEE Std
802.11ai™-2016). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

See Also

More About
• “WLAN PPDU Structure” on page 2-9

2 About WLAN

2-34

WLAN Radio Frequency Channels
WLAN operates in unlicensed radio frequency (RF) spectrum allocated by governing bodies in
individual countries for signal transmissions. Appropriate regulatory bodies specify maximum
allowable output power.

Refer to IEEE Std 802.11-2016, Annex E for detailed description of country information, operating
classes, and behavior limits. The discussion here is restricted to identification of the WLAN operating
frequency channel designations.

In general, the 2.4 GHz and 5 GHz bands of operation designate channels spaced 5 MHz apart, with
noted exceptions. As an example, the 2.4 GHz band designates channels 1 through 13 spaced 5 MHz
apart plus a 14th channel 12 MHz from channel 13. Defined WLAN channel bandwidths are greater
than 5 MHz, therefore cross-channel interference limits the number of designated usable channels.
Access point deployments manage interference from neighboring cells by operating on non-
overlapping channels. In the United States, the 2.4 GHz band designated usable non-overlapping
channels are 1, 6, and 11.

The channel center frequency, FCENTER, is calculated using the starting frequency, FSTART, and the
channel number.

FCENTER in MHz = FSTART + (5×Channel Number)

Example: Determine the center frequency for channel number 6 in the 2.4 GHz band.

FCENTER in MHz = 2407 + (5×6) = 2437 MHz.

802.11 channels
Channel Number FSTART, Starting Frequency Comments
1, ..., 13 2407 MHz For country- and release-

specific restrictions, refer to [1]14 2414 MHz
132, 133, 134, 136, 137, 138 3000 MHz
131, ..., 138 3002.5 MHz
183, ..., 197 4000 MHz
182, ..., 189 4002.5 MHz
21, 25 4850 MHz
11, 13, 15, 17, 19 4890 MHz
1, ..., 10 4937.5 MHz

 WLAN Radio Frequency Channels

2-35

802.11 channels
Channel Number FSTART, Starting Frequency Comments
7, ..., 12, 16

34, ..., 60 in increments of 2

64

100, 104, 106, 108

112, 114, 116

120, 122, 124, 128

132, 136, 138

140, 144, 149

153, 155, 157

161, 165, 169

171, ..., 184 in increments of 1

5000 MHz

6, ..., 11

170, ..., 184 in increments of 1

5002.5 MHz

1, 2, 3, 4 56.16 GHz

References
[1] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

[2] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

2 About WLAN

2-36

Acknowledgments
This table lists the copyright owners of content used in the WLAN Toolbox documentation.

Source Copyright Owner
Content from IEEE Std
802.11-2016

Adapted and reprinted with permission from IEEE. Copyright
IEEE 2016. All rights reserved.

Content from IEEE Std
802.11ah-2016

Adapted and reprinted with permission from IEEE. Copyright
IEEE 2016. All rights reserved.

 Acknowledgments

2-37

Tutorials

• “Mapping 802.11 Standards to WLAN Toolbox Configuration Objects” on page 3-2
• “Create Configuration Objects” on page 3-3
• “HE MU Transmission” on page 3-15
• “Waveform Generation” on page 3-22
• “App-Based WLAN Waveform Generation” on page 3-34
• “Generate and Parse WLAN MAC Frames” on page 3-39
• “WLAN Channel Models” on page 3-41
• “Packet Recovery” on page 3-51
• “Transmit-Receive Chain” on page 3-62

3

Mapping 802.11 Standards to WLAN Toolbox Configuration
Objects

WLAN Toolbox configuration objects define transmission parameters for IEEE 802.11 waveforms.
This table shows the mapping between 802.11 versions, their associated packet formats, and WLAN
Toolbox configuration objects.

802.11 Version Transmission Packet Format Toolbox Configuration Object
802.11 b/a/g/j/p non-HT wlanNonHTConfig
802.11n (Wi-Fi 4) HT wlanHTConfig
802.11ac (Wi-Fi 5) VHT wlanVHTConfig
802.11ah S1G wlanS1GConfig
802.11ad DMG wlanDMGConfig
802.11ax (Wi-Fi 6) HE SU, HE ER SU, HE MU wlanHESUConfig

HE MU wlanHEMUConfig
HE TB wlanHETBConfig

See Also
“WLAN PPDU Structure” on page 2-9 | “Create Configuration Objects” on page 3-3 | “Waveform
Generation” on page 3-22 | “HE MU Transmission” on page 3-15

3 Tutorials

3-2

Create Configuration Objects
WLAN Toolbox configuration objects initialize, store, and validate configuration properties. These
properties correspond to parameters that define the characteristics of IEEE
802.11b/a/g/n/j/p/ac/ah/ad/ax waveforms. The functions in the toolbox initialize parameter settings for
waveform transmission and reception by using the relevant configuration object properties.
Configuration object creation is the first step in many signal transmission and recovery workflows.

Create HE MU Configuration Object
This example shows how to create HE MU configuration objects. It also shows how to change the
default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create an HE MU configuration object with the AllocationIndex set to 0 and view the default
settings.

cfgHEMU = wlanHEMUConfig(0)

cfgHEMU =
 wlanHEMUConfig with properties:

 RU: {1x9 cell}
 User: {1x9 cell}
 NumTransmitAntennas: 1
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:
 ChannelBandwidth: 'CBW20'
 AllocationIndex: 0

Modify the defaults to specify four transmit antennas.

cfgHEMU.NumTransmitAntennas = 4

cfgHEMU =
 wlanHEMUConfig with properties:

 RU: {1x9 cell}
 User: {1x9 cell}
 NumTransmitAntennas: 4
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4

 Create Configuration Objects

3-3

 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:
 ChannelBandwidth: 'CBW20'
 AllocationIndex: 0

Create Object and Override Default Property Values

Create an HE MU configuration object with AllocationIndex set to 192. Use Name,Value pairs to
set the spatial reuse to 3.

cfgHEMU = wlanHEMUConfig(192,'SpatialReuse',3)

cfgHEMU =
 wlanHEMUConfig with properties:

 RU: {[1x1 wlanHEMURU]}
 User: {[1x1 wlanHEMUUser]}
 NumTransmitAntennas: 1
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBCompression: 1
 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 3
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:
 ChannelBandwidth: 'CBW20'
 AllocationIndex: 192

Create Single User HE Configuration Object
This example shows how to create single user HE configuration objects. It also shows how to change
the default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a single user HE configuration object and view the default settings.

hesu = wlanHESUConfig

hesu =
 wlanHESUConfig with properties:

3 Tutorials

3-4

 ChannelBandwidth: 'CBW20'
 ExtendedRange: 0
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 PreHESpatialMapping: 0
 STBC: 0
 MCS: 0
 DCM: 0
 ChannelCoding: 'LDPC'
 APEPLength: 100
 GuardInterval: 3.2000
 HELTFType: 4
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 NominalPacketPadding: 0
 PostFECPaddingSource: 'mt19937ar with seed'
 PostFECPaddingSeed: 73

Modify the defaults to specify an four transmit antennas.

hesu.NumTransmitAntennas = 4

hesu =
 wlanHESUConfig with properties:

 ChannelBandwidth: 'CBW20'
 ExtendedRange: 0
 NumTransmitAntennas: 4
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 PreHESpatialMapping: 0
 STBC: 0
 MCS: 0
 DCM: 0
 ChannelCoding: 'LDPC'
 APEPLength: 100
 GuardInterval: 3.2000
 HELTFType: 4
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 NominalPacketPadding: 0
 PostFECPaddingSource: 'mt19937ar with seed'
 PostFECPaddingSeed: 73

Create Object and Override Default Property Values

Create a single user HE configuration object. Use Name,Value pairs to set the modulation and
coding scheme to 9 and to enable space-time block coding.

 Create Configuration Objects

3-5

hesu2 = wlanHESUConfig('MCS',9,'STBC',true)

hesu2 =
 wlanHESUConfig with properties:

 ChannelBandwidth: 'CBW20'
 ExtendedRange: 0
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 PreHESpatialMapping: 0
 STBC: 1
 MCS: 9
 DCM: 0
 ChannelCoding: 'LDPC'
 APEPLength: 100
 GuardInterval: 3.2000
 HELTFType: 4
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 NominalPacketPadding: 0
 PostFECPaddingSource: 'mt19937ar with seed'
 PostFECPaddingSeed: 73

Create DMG Configuration Object
This example shows how to create DMG configuration objects. It also shows how to change the
default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a DMG configuration object and view the default settings. By default, the configuration object
creates properties to model the DMG control PHY.

dmg = wlanDMGConfig

dmg =
 wlanDMGConfig with properties:

 MCS: '0'
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 Turnaround: 0

Model the SC PHY by modifying the defaults to specify an MCS of 5.

dmg.MCS = 5

dmg =
 wlanDMGConfig with properties:

3 Tutorials

3-6

 MCS: 5
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 AggregatedMPDU: 0
 LastRSSI: 0
 Turnaround: 0

For the various configurations, different sets of configuration fields apply and are visible. By changing
the MCS setting from 0 to 5, we see that the configured object includes the AggregationMPDU and
LastRSSI fields.

Create Object and Override Default Property Values

Create a DMG configuration object for OFDM PHY. Use Name,Value pairs to set the MCS to 14 and
specify four training fields.

dmg2 = wlanDMGConfig('MCS',14,'TrainingLength',4)

dmg2 =
 wlanDMGConfig with properties:

 MCS: 14
 TrainingLength: 4
 PacketType: 'TRN-R'
 BeamTrackingRequest: 0
 TonePairingType: 'Static'
 PSDULength: 1000
 ScramblerInitialization: 2
 AggregatedMPDU: 0
 LastRSSI: 0
 Turnaround: 0

Create S1G Configuration Object
This example shows how to create S1G configuration objects. It also shows how to change the default
property settings by using dot notation or by overriding the default settings by using Name,Value
pairs when creating the object.

Create Object and Then Modify Properties

Create a S1G configuration object and view the default settings.

s1g = wlanS1GConfig

s1g =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0

 Create Configuration Objects

3-7

 MCS: 0
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 258

Modify the defaults to specify an 8 MHz channel bandwidth, three transmit antennas, and three
space-time streams.

s1g.ChannelBandwidth = 'CBW8';
s1g.NumTransmitAntennas = 3;
s1g.NumSpaceTimeStreams = 3

s1g =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW8'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: 3
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 261

Create Object and Override Default Property Values

Create a S1G configuration object. Use Name,Value pairs to set the MCS to 5 and to specify two
transmit antennas.

s1g2 = wlanS1GConfig('MCS',5,'NumTransmitAntennas',2)

s1g2 =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'

3 Tutorials

3-8

 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 5
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 258

As currently configured, this object is not a valid S1G configuration. Validation of the object occurs
when it is the input to a calling function. When spatial mapping is 'Direct', the number of space-
time streams must equal the number of transmit antennas. Changing the number of space time
streams to match the number of transmit antennas is one option to make the configuration of the
object valid.

s1g2.NumSpaceTimeStreams = 2

s1g2 =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 2
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 5
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'

 Create Configuration Objects

3-9

 PSDULength: 258

Create VHT Configuration Object
This example shows how to create VHT configuration objects. It also shows how to change the default
property settings by using dot notation or by overriding the default settings by using Name,Value
pairs when creating the object.

Create Object and Then Modify Properties

Create a VHT configuration object and view the default settings.

vht = wlanVHTConfig

vht =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 1
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1035

Modify the defaults to specify a 160 MHz channel bandwidth, two transmit antennas, and two space-
time streams.

vht.ChannelBandwidth = 'CBW160';
vht.NumTransmitAntennas = 2;
vht.NumSpaceTimeStreams = 2

vht =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW160'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 2
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

3 Tutorials

3-10

 Read-only properties:
 PSDULength: 1050

Create Object and Override Default Property Values

Create a VHT configuration object. Use Name,Value pairs to set the MCS to 7 and to specify two
transmit antennas.

vht2 = wlanVHTConfig('MCS',7,'NumTransmitAntennas',2)

vht2 =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 7
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1167

As currently configured, this object is not a valid VHT configuration. Validation of the object occurs
when it is the input to a calling function. When spatial mapping is Direct, the number of space-time
streams must equal the number of transmit antennas. Changing the number of space time streams to
match the number of transmit antennas is one option to make the configuration of the object valid.

vht2.NumSpaceTimeStreams = 2

vht2 =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 2
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 7
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:

 Create Configuration Objects

3-11

 PSDULength: 1166

Create HT Configuration Object
This example shows how to create HT configuration objects. It also shows how to change the default
property settings by using dot notation or by overriding the default settings by using Name,Value
pairs when creating the object.

Create Object and Then Modify Properties

Create an HT configuration object and view the default settings.

ht = wlanHTConfig

ht =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Modify the defaults to specify three transmit antennas and two space-time streams.

ht.NumTransmitAntennas = 3;
ht.NumSpaceTimeStreams = 2

ht =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: 2
 NumExtensionStreams: 0
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

As the settings of the object are modified, the set of properties that apply for the current
configuration are shown. When the number of transmit antennas is more than the number of space-
time streams, the number of extension streams property applies and is shown. Also, as currently
configured, this object is not a valid HT configuration because the default 'Direct' spatial mapping
requires the number of space-time streams to equal the number of transmit antennas. Validation of
the object occurs when it is input to a calling function.

3 Tutorials

3-12

Create Object and Override Default Property Values

Create an HT configuration object. Use Name,Value pairs to define a sounding packet by specifying
PSDULength = 0, and set the number of transmit antennas and space-time streams to 3.

ht2 = wlanHTConfig('PSDULength',0,'NumTransmitAntennas',3,'NumSpaceTimeStreams',3)

ht2 =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: 3
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 0
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Create Non-HT Configuration Object
This example shows how to create non-HT configuration objects. It also shows how to change the
default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a non-HT configuration object and view the default settings.

nonHT = wlanNonHTConfig

nonHT =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 0
 PSDULength: 1000
 NumTransmitAntennas: 1
 SignalChannelBandwidth: 0

Modify the defaults to specify four transmit antennas and to set the MCS to 3.

nonHT.NumTransmitAntennas = 4;
nonHT.MCS = 3

nonHT =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 3
 PSDULength: 1000
 NumTransmitAntennas: 4

 Create Configuration Objects

3-13

 SignalChannelBandwidth: 0

Create Object and Override Default Property Values

Create a non-HT configuration object. Use a Name,Value pair change the modulation scheme to
DSSS.

nonHT2 = wlanNonHTConfig('Modulation','DSSS')

nonHT2 =
 wlanNonHTConfig with properties:

 Modulation: 'DSSS'
 DataRate: '1Mbps'
 LockedClocks: 1
 PSDULength: 1000

For the DSSS modulation scheme, a different set of properties apply and are shown for the non-HT
configuration object.

See Also
Objects
wlanDMGConfig | wlanHEMUConfig | wlanHERecoveryConfig | wlanHESUConfig |
wlanHTConfig | wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig

Related Examples
• “Waveform Generation” on page 3-22
• “What Is WLAN?” on page 2-2

3 Tutorials

3-14

HE MU Transmission
In this section...
“Transmission Mode Options” on page 3-15
“Allocation Index” on page 3-15

Transmission Mode Options
The options for high-efficiency multi-user (HE MU) transmissions are:

• Orthogonal frequency-division multiple access (OFDMA)
• Full-band multi-user multiple-input/multiple-output (MU-MIMO)
• Mixed OFDMA and MU-MIMO

To choose a transmission mode, you must enable or disable SIGB compression by specifying the state
of the SIGB compression bit in the HE-SIG-A field.

• For a 20 MHz transmission, specify the SIGB compression bit directly by setting the
SIGBCompression property of the wlanHEMUConfig object.

• To enable SIGB compression, set the SIGBCompression property to 1 (true).
• To disable SIGB compression, set the SIGBCompression property to 0 (false).

• For a 40, 80, or 160 MHz transmission, enable or disable SIGB compression by setting the
AllocationIndex property of the wlanHEMUConfig object.

When SIGB compression is enabled, the transmission is full-bandwidth MU-MIMO. The HE-SIG-B field
contains no common field, and the resource unit (RU) allocation in the user fields adheres to a
standard-specified pattern. Because there is no common field in this case, no allocation index is
transmitted. The number of users is determined by decoding the HE-SIG-A field.

When SIGB compression is disabled:

• The transmission is either OFDMA or mixed OFDMA and MU-MIMO, depending on the
AllocationIndex property of the HE MU configuration object.

• The HE-SIG-B common field includes RU allocation subfields to specify the RU assignment and the
number of users per RU for each 20 MHz bandwidth segment.

The “802.11ax Parameterization for Waveform Generation and Simulation” example introduces the
concepts associated with HE transmission modes, RU allocation, and parameterization.

The “Recovery Procedure for an 802.11ax Packet” example demonstrates the required steps to detect
and decode an HE MU transmission.

Allocation Index
When creating a wlanHEMUConfig object, you must specify the value of the AllocationIndex
property. Once the object is created, the AllocationIndex property is read-only.

The AllocationIndex property defines the RU allocation index or a set of RU allocation indices.

 HE MU Transmission

3-15

• Specify a single allocation index using one integer in either of these forms.

• An integer in the interval [0, 223]
• An 8-bit binary sequence specified as a string or character vector

• Specify multiple allocation indices using two, four, or eight integer values in any of these forms.

• A vector of integers in the interval [0, 223]
• An 8-bit binary sequence specified as a string array
• An 8-bit binary sequence specified as a cell array of character vectors

You can signal punctured 20 MHz or 40 MHz subchannels in an 80 MHz or 160 MHz
transmission. To signal a punctured 20 MHz subchannel, set the corresponding element to
113. To signal a punctured 40 MHz subchannel, set the two corresponding adjacent elements
to 114. To signal an empty HE-SIG-B user field in an HE-SIG-B content channel, set the
corresponding element to 114 or 115.

An RU is a group of 26, 52, 106, 242, 484, 996, or 2×996 subcarriers defining an allocation unit in
time and frequency.

The values specified in the AllocationIndex property correspond to the 8-bit indices for each 20
MHz subchannel in the first column of Table 27-24 in [1]. The allocation indices define the number of
RUs, RU sizes, and number of users assigned to each RU. When SIGB compression is enabled, the
number of users is determined by decoding the HE-SIG-A field. When SIGB compression is disabled,
the number of users is determined by decoding the HE-SIG-B common field.

When SIGB compression is enabled, the HE-SIG-B field contains only the user field.

When SIGB compression is disabled, the HE-SIG-B field includes both the common and user fields.
The common field carries the RU Allocation subfields in one or two content channels. Depending on
the PPDU bandwidth, the common field can contain multiple RU Allocation subfields. For a discussion
of the frequency-domain mapping of channel contents into the common field, see section 27.3.10.8.3
of [1].

This figure shows the structure of the HE-SIG-B field when SIGB compression is disabled.

3 Tutorials

3-16

The format of the common field is defined in Table 27-23 of [1]. The RU Allocation subfield in the
common field of HE-SIG-B consists of 8 bits that indicate this information for each 20 MHz PPDU
bandwidth.

• RU assignment in the frequency domain, which determines the size of the RUs and their
placement in the frequency domain.

• Number of user fields in a 20 MHz band within the HE-SIG-B content channel, which determines
the number of users multiplexed in the RUs. For RUs of size greater than or equal to 106 tones,
which support MU-MIMO, the RU Allocation subfield indicates the number of users multiplexed
using MU-MIMO. The HE-SIG-B field consists of N RU Allocation subfields, where:

• N = 1 for 20 MHz and 40 MHz HE MU PPDUs
• N = 2 for 80 MHz HE MU PPDUs
• N = 4 for 160 MHz and 80+80 MHz HE MU PPDUs

This table lists the allocation indices and corresponding RU assignments for 20 MHz subchannels and
RUs with at most 242 tones. The table shows the number of tones per RU and the number of users
assigned for each allocation index.

 HE MU Transmission

3-17

This table lists the allocation indices and corresponding RU assignments for subchannels greater
than 20 MHz and RUs of more than 242 tones.

The format of the user field for non-MU-MIMO and MU-MIMO allocations are defined in Tables 27-26
and 27-27, of [1], respectively.

This table shows allocation index options required to specify transmission type for all channel
bandwidths.

3 Tutorials

3-18

Transmission
Type

20 MHz
Transmission

40 MHz
Transmission

80 MHz
Transmission

160 MHz
Transmission

Full-bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBCompr
ession', 1)

Specify a as an
integer in the
interval [192, 199].

wlanHEMUConfi
g(a)

Specify a as an
integer in the
interval [200, 207].

wlanHEMUConfi
g(a)

Specify a as an
integer in the
interval [208, 215].

wlanHEMUConfi
g(a)

Specify a as an
integer in the
interval [216, 223].

The wlanHEMUConfig object sets the SIGBCompression
property to 1 (true), and splits users between the two
content channels.

Full-bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBCompr
ession',0)

Specify a as an
integer in the
interval [192, 199].

wlanHEMUConfi
g([a 114])

Specify a as an
integer in the
interval [200, 207].

wlanHEMUConfi
g([a 115 115
115])

wlanHEMUConfi
g([115 115 a
115])

wlanHEMUConfi
g([a 115 b
115])

Specify a and b as
integers in the
interval [208, 215].

wlanHEMUConfi
g([a 115 115
115 115 115
115 115])

wlanHEMUConfi
g([a 115 b 115
c 115 d 115])

wlanHEMUConfi
g([115 115 115
115 a 115 b
115])

wlanHEMUConfi
g([115 115 115
115 115 115 a
115])

wlanHEMUConfi
g([115 115 a
115 115 115 b
115])

Specify a, b, c, and
d as integers in the
interval [216, 223].

The wlanHEMUConfig object sets the SIGBCompression
property to 0 (false). All users are in content channel 1.

 HE MU Transmission

3-19

Transmission
Type

20 MHz
Transmission

40 MHz
Transmission

80 MHz
Transmission

160 MHz
Transmission

Full-bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBCompr
ession',0)

Specify a as an
integer in the
interval [192, 199].

wlanHEMUConfi
g([114 a])

Specify a as an
integer in the
interval [200, 207].

wlanHEMUConfi
g([115 a 115
115])

wlanHEMUConfi
g([115 115 115
a])

wlanHEMUConfi
g([115 a 115
b])

Specify a and b as
integers in the
interval [208, 215].

wlanHEMUConfi
g([115 a 115
115 115 115
115 115])

wlanHEMUConfi
g([115 a 115 b
115 c 115 d])

wlanHEMUConfi
g([115 115 115
115 115 a 115
b])

wlanHEMUConfi
g([115 115 115
115 115 115
115 a])

wlanHEMUConfi
g([115 115 115
a 115 115 115
b])

Specify a, b, c, and
d as integers in the
interval [216, 223].

The wlanHEMUConfig object sets the SIGBCompression
property to 0 (false). All users are in content channel 2.

Full bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBCompr
ession',0)

Specify a as an
integer in the
interval [192, 199].

wlanHEMUConfi
g([a b])

Specify a and b as
integers in the
interval [200, 207].

wlanHEMUConfi
g([a b c d])

Specify a, b, c, and
d as integers in the
interval [208, 215].

wlanHEMUConfi
g([a b c d e f
g h])

Specify a, b, c, d,
e, f, g, and h as
integers in the
interval [216, 223].

The wlanHEMUConfig object sets the SIGBCompression
property to 0 (false). Users are in their respective content
channels. For example, in the 80 MHz transmission case,
the users represented by allocation indices a and c are in
content channel 1, and the users represented by allocation
indices b and d are in content channel 2.

3 Tutorials

3-20

Transmission
Type

20 MHz
Transmission

40 MHz
Transmission

80 MHz
Transmission

160 MHz
Transmission

Mixed OFDMA and
MU-MIMO

wlanHEMUConfi
g(a,'SIGBCompr
ession',0)

Specify a as an
integer in the
interval [0, 191].

wlanHEMUConfi
g([a b])

Specify a and b as
integers in the
interval [0, 199].

wlanHEMUConfi
g([a b c d])

Specify a, b, c, and
d as integers in the
interval [0, 207].

wlanHEMUConfi
g([a b c d e f
g h])

Specify a, b, c, d,
e, f, g, and h as
integers in the
interval [0, 215].

20 MHz
transmissions have
only one content
channel.

The wlanHEMUConfig object sets the SIGBCompression
property to 0 (false). Users are in their respective content
channels. For example, in the 80 MHz transmission case,
the users represented by allocation indices a and c are in
content channel 1, and the users represented by allocation
indices b and d are in content channel 2.

References
[1] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

See Also

More About
• “WLAN PPDU Structure” on page 2-9

 HE MU Transmission

3-21

Waveform Generation
After you create the necessary configuration objects described in “Create Configuration Objects” on
page 3-3, you can use the objects to generate the desired WLAN format waveform.

The IEEE 802.112 standards define a physical layer protocol data unit (PPDU) as the transmission
unit at the physical layer. For a detailed description of the PPDU field structures for each
transmission format, see “WLAN PPDU Structure” on page 2-9.

HE Format

In HE, there are four transmission modes supported: single user, single user extended range, trigger-
based, and multi-user.

DMG PPDU

In DMG, there are three physical layer (PHY) modulation schemes supported: control, single carrier,
and OFDM.

2. IEEE Std 802.11-2016 Adapted and reprinted with permission from IEEE. Copyright IEEE 2016. All rights reserved.

3 Tutorials

3-22

S1G Format

In S1G, there are three transmission modes: S1G_LONG, S1G_SHORT, and S1G_1M. Each
transmission mode has a specific PPDU preamble structure.

VHT, HT, and non-HT Formats

The VHT, HT, and non-HT PPDU formats consist of preamble and data fields.

 Waveform Generation

3-23

Use WLAN Toolbox functions to generate a full PPDU waveform or individual PPDU field waveforms.

Generate a full PPDU waveform by using the wlanWaveformGenerator function to populate all
PPDU fields (preamble and data) in a single call. The wlanWaveformGenerator function accepts a
bit stream, a format configuration object, and Name,Value pairs to configure the waveform.

Generate WLAN Waveforms
Generate HE, DMG, S1G, VHT, HT-mixed, and non-HT format waveforms. Vary configuration
parameters and plot the waveforms to highlight differences in waveforms and sample rates.

In each section of this example, you:

• Create a format-specific configuration object.
• Create a vector of information bits for the packet data payload. Internally, the

wlanWaveformGeneration function loops through the bits vector as many times as needed to
generate the specified number of packets.

• Generate the format-specific waveform and plot it. For plotting, because no filtering is applied to
the waveform and the oversampling rate is 1, set the sampling rate equal to the channel
bandwidth.

3 Tutorials

3-24

Generate Single User HE Format Waveform

Create an HE single-user (HE SU) configuration object and waveform. Using Name,Value pairs,
specify 4 packets and 15 microseconds of idle time. Display the configuration object and inspect its
properties and settings.

cfgHESU = wlanHESUConfig;
bits = [1;0;0;1;1];
hesuWaveform = wlanWaveformGenerator(bits,cfgHESU, ...
 'NumPackets',4,'IdleTime',15e-6);

Plot the single user HE format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(hesuWaveform)-1)/fs)*1e6;
plot(time,abs(hesuWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

The plot shows four single user HE format packets, with each packet separated by 15 microseconds
of idle time.

Generate Multiuser HE Format Waveform

Create an HE multiuser (HE MU) configuration object and waveform. Using Name,Value pairs,
specify 3 packets and 30 microseconds of idle time. Display the configuration object and inspect its
properties and settings.

 Waveform Generation

3-25

cfgHEMU = wlanHEMUConfig(192);
bits = [1;0;0;1;1];
hemuWaveform = wlanWaveformGenerator(bits,cfgHEMU, ...
 'NumPackets',3,'IdleTime',30e-6);

Plot the multiuser HE format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(hemuWaveform)-1)/fs)*1e6;
plot(time,abs(hemuWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

The plot shows three multiuser HE format packets, with each packet separated by 30 microseconds
of idle time.

Generate DMG Format Waveform

Create a DMG configuration object and waveform. Using Name,Value pairs, assign 13 for the MCS
which specifies an OFDM waveform, 4 packets, and 2 microseconds of idle time. Display the
configuration object and inspect its properties and settings.

cfgDMG = wlanDMGConfig('MCS',13);
bits = [1;0;0;1;1];
dmgWaveform = wlanWaveformGenerator(bits,cfgDMG, ...
 'NumPackets',4,'IdleTime',2e-6);

Plot the DMG format waveform, scaling the x-axis relative to the channel bandwidth.

3 Tutorials

3-26

fs = 2640e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(dmgWaveform)-1)/fs)*1e6;
plot(time,abs(dmgWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

The plot shows four DMG format packets, with each packet separated by 2 microseconds of idle time.

Generate S1G Format Waveform

Create a sub-1-GHz (S1G) configuration object and waveform. Using Name,Value pairs, specify 4
MHz channel bandwidth, 3 packets, and 15 microseconds of idle time. Display the configuration
object and inspect its properties and settings.

cfgS1G = wlanS1GConfig('ChannelBandwidth','CBW4');
bits = [1;0;0;1;1];

s1gWaveform = wlanWaveformGenerator(bits,cfgS1G, ...
 'NumPackets',3,'IdleTime',15e-6);

Plot the S1G format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 4e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(s1gWaveform)-1)/fs)*1e6;
plot(time,abs(s1gWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

 Waveform Generation

3-27

The plot shows three S1G format packets, with each packet separated by 15 microseconds of idle
time.

Generate VHT Format Waveform

Create a VHT configuration object and waveform. Using Name,Value pairs, specify 5 packets and 20
microseconds of idle time. Display the configuration object and inspect its properties and settings.

cfgVHT = wlanVHTConfig;
bits = [1;0;0;1;1];
vhtWaveform = wlanWaveformGenerator(bits,cfgVHT, ...
 'NumPackets',5,'IdleTime',20e-6);

Plot the VHT format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 80e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(vhtWaveform)-1)/fs)*1e6;
plot(time,abs(vhtWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

3 Tutorials

3-28

The plot shows five VHT format packets, with each packet separated by 20 microseconds of idle time.

Generate HT Format Waveform

Create an HT configuration object and waveform. Using Name,Value pairs, specify 5 packets and 30
microseconds of idle time. Display the configuration object and inspect its properties and settings.

cfgHT = wlanHTConfig;
bits = [1;0;0;1;1];
htWaveform = wlanWaveformGenerator(bits,cfgHT, ...
 'NumPackets',5,'IdleTime',30e-6);

Plot the HT format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(htWaveform)-1)/fs)*1e6;
plot(time,abs(htWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

 Waveform Generation

3-29

The plot shows five HT format packets, with 30 microseconds of idle time separating each packet.

Generate Non-HT Format DSSS Waveform

Create a non-HT configuration object and generate a non-HT format DSSS waveform with a 2 Mbps
data rate. Using Name,Value pairs, specify 2 packets and 5 microseconds of idle time. Display the
configuration object and inspect its properties and settings.

cfgNonHT = wlanNonHTConfig('Modulation','DSSS','DataRate','2Mbps');
bits = [1;0;0;1;1];
nhtDSSSWaveform = wlanWaveformGenerator(bits,cfgNonHT, ...
 'NumPackets',2,'IdleTime',5e-6);

Plot the non-HT Format DSSS waveform, scaling the x-axis relative to the channel bandwidth. As
specified in IEEE 802.11-2012, Section 17.1.1, the channel bandwidth is 11 MHz for DSSS.

fs = 11e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(nhtDSSSWaveform)-1)/fs)*1e6;
plot(time,real(nhtDSSSWaveform),'.')
xlabel ('Time (microseconds)');
ylabel('Re[nhtDSSSWaveform]');
axis([8190,8200,-1.1,1.1])

3 Tutorials

3-30

Sample values in DSSS modulation are –1 or 1. The plot shows the real values for a section of the
waveform that includes the tail end of the first packet, the 5 microsecond idle period, and the
beginning of the second packet for the non-HT format DSSS modulated waveform.

Generate Non-HT Format OFDM Waveform

Create a non-HT configuration object and waveform. Using Name,Value pairs, specify 4 packets and
45 microseconds of idle time. Display the configuration object and inspect its properties and settings.

cfgNonHT = wlanNonHTConfig;
bits = [1;0;0;1;1];
nhtWaveform = wlanWaveformGenerator(bits,cfgNonHT, ...
 'NumPackets',4,'IdleTime',45e-6);

Plot the non-HT format OFDM waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(nhtWaveform)-1)/fs)*1e6;
plot(time,abs(nhtWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

 Waveform Generation

3-31

The plot shows four non-HT format OFDM modulated packets, with 45 microseconds of idle time
separating each packet.

Waveforms of Individual PPDU Fields
You can also create a VHT, HT, or non-HT PPDU waveform by generating and concatenating
waveforms for individual PPDU fields.

PPDU Format Individual Field Functions
VHT wlanLSTF, wlanLLTF, wlanLSIG, wlanVHTSTF,

wlanVHTLTF, wlanVHTSIGA, wlanVHTSIGB, and
wlanVHTData

HT wlanLSTF, wlanLLTF, wlanLSIG, wlanHTSTF,
wlanHTLTF, wlanHTSIG, and wlanHTData

Non-HT for OFDM modulation wlanLSTF, wlanLLTF, wlanLSIG, and
wlanNonHTData

Generating individual PPDU field waveforms, enables you to experiment with the individual fields
without generating an entire PPDU.

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig

3 Tutorials

3-32

More About
• “Create Configuration Objects” on page 3-3
• “WLAN Channel Models” on page 3-41
• “What Is WLAN?” on page 2-2

 Waveform Generation

3-33

App-Based WLAN Waveform Generation
This example shows how to generate IEEE® 802.11™ waveforms by using the WLAN Waveform
Generator app.

Open WLAN Waveform Generator App

On the Apps tab of the MATLAB® toolstrip, select the WLAN Waveform Generator app icon under
Signal Processing and Communications. This selection opens the Wireless Waveform
Generator app configured for WLAN waveform generation.

Select IEEE 802.11 PHY Format

Choose the PHY format of the waveform you want to generate by selecting one of the formats under
WLAN (IEEE 802.11) in the Waveform Type section of the app toolstrip. The app supports these
IEEE 802.11 PHY formats.

• 802.11ax
• 802.11ah
• 802.11ad
• 802.11n/ac
• 802.11p
• 802.11b/g
• 802.11a/g/j

Generate WLAN Waveforms

Set transmission and configuration parameters by specifying options in the Waveform tab on the left
pane of the app. Add impairments and select visualization tools by specifying options in the
Generation section of the app toolstrip. To visualize the waveform, click Generate. You can export
the generated waveform and its parameters by clicking Export. You can export the waveform to:

• A MATLAB script with a .m extension
• a file with a .bb or .mat extension
• Your MATLAB workspace as a structure

Generate HE TB Waveform with Default Settings

This image shows the Time Scope and Spectrum Analyzer visualization results for a high-efficiency
trigger-based (HE TB) waveform. The waveform comprises a single packet. The RU size is 52
subcarriers, and the RU index is 3. All other transmission and configuration parameters take their
default values.

3 Tutorials

3-34

Generate HE ER SU Waveform with Packet Extension

This image shows the Time Scope and Spectrum Analyzer visualization results for a high-efficiency
extended-range single-user (HE ER SU) waveform. The waveform comprises two packets separated
by an idle time of 50 microseconds, and contains a nominal packet padding of 8 microseconds for
packet extension. The transmission of this waveform uses two antennas and Hadamard spatial
mapping. All other format and configuration parameters take their default values.

 App-Based WLAN Waveform Generation

3-35

Generate HE MU Waveform with 10 Transmit Antennas

This image shows the RU & Subcarrier Assignment visualization results for a high-efficiency multi-
user (HE MU) waveform comprising a single-packet. The transmission bandwidth is 80 MHz and the
number of antennas is 10, which requires configuration of the Pre-HE cyclic shifts (ns) parameter.
The transmission includes midamble in the HE-Data field. The allocation indices determine the RU
and subcarrier assignment. This image shows RU numbers, sizes, indices, and allocated users, and
the result of clicking the first RU in the transmission. All resource units use Fourier spatial mapping.
Users specified by indices 1-3 use a modulation and coding scheme (MCS) index of 7, the user
specified by index 4 uses an MCS index of 10, and the users specified by indices 5 and 6 use an MCS
index of 11. The app displays the resulting PSDU length for each user. All other format and
configuration parameters take their default values.

3 Tutorials

3-36

Transmit WLAN Waveform

This feature requires “Instrument Control Toolbox”™ software. To transmit a generated waveform,
click the Transmitter tab on the app toolstrip and configure the instruments. You can use any
instrument supported by the rfsiggen (Instrument Control Toolbox) function.

References
[1] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

[2] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

[3] IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016 as amended by IEEE Std
802.11ai™-2016). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

 App-Based WLAN Waveform Generation

3-37

See Also
Apps
WLAN Waveform Generator

More About
• “Waveform Generation” on page 3-22

External Websites
• “Use Wireless Waveform Generator App”

3 Tutorials

3-38

Generate and Parse WLAN MAC Frames
This example shows how to configure and generate WLAN MAC frames, then recover the payload of
MSDUs by parsing the MAC frame.

Introduction

The IEEE® 802.11™ family of standards supports four types of MAC frame: control, data,
management, and extension. Within each of these types, the standard defines a range of subtypes,
each of which serves a specific purpose in an 802.11™ network.

This example demonstrates how to configure, generate, and parse MPDUs and A-MPDUs by using
WLAN Toolbox™ configuration objects and functions.

Generate and Decode MPDU

Create a MAC frame configuration object for a Data frame, specifying a high-efficiency single-user
(HE SU) physical layer (PHY) configuration.

cfgMPDU = wlanMACFrameConfig('FrameType','Data','FrameFormat','HE-SU');

Specify an MSDU as a numeric vector of octets in bit format. You can also specify MSDUs as a
character vector or string of octets in hexadecimal format.

msdu = randi([0 255],32,1);

Generate the MPDU by calling the wlanMACFrame function, specifying bits as the output format.

[mpdu,mpduLength] = wlanMACFrame(msdu,cfgMPDU,'OutputFormat','bits');

Recover the MSDU by calling the wlanMPDUDecode function. The function also returns the MAC
frame configuration object and the status of the decoding. Check that the decoding operation returns
the correct frame format and display the status.

[rxCfgMPDU,payload,status] = wlanMPDUDecode(mpdu,wlanHESUConfig);
disp(isequal(cfgMPDU.FrameFormat,rxCfgMPDU.FrameFormat))

 1

disp(status)

 Success

Generate and Parse A-MPDU

Create a configuration object for a QoS Data MAC frame, specifying an HE SU PHY configuration.
Enable MPDU aggregation and disable MSDU aggregation.

cfgAMPDU = wlanMACFrameConfig('FrameType','QoS Data','FrameFormat','HE-SU',...
 'MPDUAggregation',true,'MSDUAggregation',false);

Specify a cell array of MSDUs, specifying each MSDU as a numeric vector of octets in bit format. You
can also specify MSDUs as a character vector or string of octets in hexadecimal format.

msduList = repmat({randi([0 255],32,1)},1,4);

Generate the MPDU for a HE SU PHY configuration by calling the wlanMACFrame function.

 Generate and Parse WLAN MAC Frames

3-39

cfgPHY = wlanHESUConfig('MCS',5);
[ampdu,ampduLength] = wlanMACFrame(msduList,cfgAMPDU,cfgPHY,'OutputFormat','bits');

Deaggregate the A-MPDU to return the MPDU list by calling the wlanAMPDUDeaggregate function.
The function also returns the result of the delimiter cyclic redundancy check (CRC) and the status of
A-MPDU deaggregation.

[mpduList,delimiterCRCFailure,status] = wlanAMPDUDeaggregate(ampdu,cfgPHY);

Display the number of delimiter CRC failures and the status of deaggregation.

disp(nnz(delimiterCRCFailure))

 0

disp(status)

 Success

Obtain the MSDUs by decoding the deaggregated MPDUs with the wlanMPDUDecode function and
display the status of the decoding process.

if strcmp(status,'Success')
 for i = 1:numel(mpduList)
 if ~delimiterCRCFailure(i)
 [cfg,msdu,decodeStatus] = wlanMPDUDecode(mpduList{i},cfgPHY,'DataFormat','octets');
 disp(['MPDU ' num2str(i) ' decoding status: ' char(decodeStatus)])
 end
 end
end

MPDU 1 decoding status: Success
MPDU 2 decoding status: Success
MPDU 3 decoding status: Success
MPDU 4 decoding status: Success

See Also

More About
• “802.11ac Waveform Generation with MAC Frames”
• “802.11 MAC Frame Generation”
• “802.11 MAC Frame Decoding”

3 Tutorials

3-40

WLAN Channel Models
This example demonstrates passing WLAN S1G, VHT, HT, and non-HT format waveforms through
appropriate fading channel models. When simulating a WLAN communications link, viable options for
channel modeling include the TGah,TGn and TGac models from WLAN Toolbox™ and the additive
white Gaussian noise (AWGN) and 802.11g models from Communications Toolbox™. In this example,
it is sufficient to set the channel model sampling frequency to match the channel bandwidth because
no front-end filtering is applied to the signal and the oversampling rate is 1.

In each section of this example, you:

• Create a waveform.
• Transmit it through a fading channel with noise added.
• Use a spectrum analyzer to display the waveform before and after it passes through the noisy

fading channel.

Pass S1G Waveform Through TGah SISO Channel

Create a bit stream to use when generating the WLAN S1G format waveform.

bits = randi([0 1],1000,1);

Create an S1G configuration object, and then generate a 2 MHz S1G waveform. Calculate the signal
power.

s1g = wlanS1GConfig;
preChS1G = wlanWaveformGenerator(bits,s1g);

Pass the signal through a TGah SISO channel with AWGN noise (SNR=10 dB) and a receiver with a 9
dB noise figure. Recall that the channel model sampling frequency is equal to the bandwidth in this
example. Set property values by using name-value pairs.

Create a TGah channel object. Set the channel model sampling frequency and channel bandwidth,
enable path loss and shadowing, and use the Model-D delay profile.

cbw = s1g.ChannelBandwidth;
fs = 2e6; % Channel model sampling frequency equals the channel bandwidth
tgahChan = wlanTGahChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-D');

Create an AWGN Channel object with SNR = 10 dB. Determine the signal power in Watts, accounting
for the TGah large scale fading pathloss.

preChSigPwr_dB = 20*log10(mean(abs(preChS1G)));
sigPwr = 10^((preChSigPwr_dB-tgahChan.info.Pathloss)/10);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10,'SignalPower', sigPwr);

Pass the S1G waveform through a SISO TGah channel and add the AWGN channel noise.

postChS1G = chNoise(tgahChan(preChS1G));

Create another AWGN Channel object to add receiver noise.

 WLAN Channel Models

3-41

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the S1G waveform through the receiver. Choose an appropriate noise variance, nVar, to set the
receiver noise level. Here, the receiver noise level is based on the noise variance for a receiver with a
9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient temperature of
290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxS1G = rxNoise(postChS1G,nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '2 MHz S1G Waveform Before and After TGah Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'AveragingMethod','Exponential','ForgettingFactor',0.99,'Title',title,...
 'ChannelNames',{'Before','After'});
saScope([preChS1G,rxS1G])

Path loss accounts for the roughly 50 dB of separation between the waveform before and after it
passes through the TGah channel. The path loss results from the default transmitter-to-receiver
distance of 3 meters, and from shadowing effects. The signal level variation shows the frequency
selectivity of the delay profile across the frequency spectrum.

3 Tutorials

3-42

Pass VHT Waveform Through TGac SISO Channel

Create a bit stream to use when generating the WLAN VHT format waveform.

bits = randi([0 1],1000,1);

Create a VHT configuration object, and generate an 80 MHz VHT waveform. Calculate the signal
power.

vht = wlanVHTConfig;
preChVHT = wlanWaveformGenerator(bits,vht);

Pass the signal through a TGac SISO channel with AWGN noise (SNR=10 dB) and a receiver with a 9
dB noise figure. Recall that the channel model sampling frequency is equal to the bandwidth in this
example. Set parameters using Name,Value pairs.

Create a TGac channel object. Set the channel model sampling frequency and channel bandwidth,
enable path loss and shadowing, and use the Model-D delay profile.

cbw = vht.ChannelBandwidth;
fs = 80e6; % Channel model sampling frequency equals the channel bandwidth
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-D');

Create an AWGN Channel object with SNR = 10 dB. Determine the signal power in Watts, accounting
for the TGac large scale fading pathloss.

preChSigPwr_dB = 20*log10(mean(abs(preChVHT)));
sigPwr = 10^((preChSigPwr_dB-tgacChan.info.Pathloss)/10);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10,'SignalPower', sigPwr);

Pass the VHT waveform through a SISO TGac channel and add the AWGN channel noise.

postChVHT = chNoise(tgacChan(preChVHT));

Create another AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the VHT waveform through the receiver. Choose an appropriate noise variance, nVar, to set the
receiver noise level. Here, the receiver noise level is based on the noise variance for a receiver with a
9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient temperature of
290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxVHT = rxNoise(postChVHT,nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '80 MHz VHT Waveform Before and After TGac Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'AveragingMethod','Exponential','ForgettingFactor',0.99,'Title',title,...

 WLAN Channel Models

3-43

 'ChannelNames',{'Before','After'});
saScope([preChVHT,rxVHT])

Path loss accounts for the roughly 50 to 60 dB of separation between the waveform before and after it
passes through the TGac channel. The path loss results from the default transmitter-to-receiver
distance of 3 meters, and from shadowing effects. The signal level variation shows the frequency
selectivity of the delay profile across the frequency spectrum.

Pass HT Waveform Through TGn SISO Channel

Create a bit stream to use when generating the WLAN HT format waveform.

bits = randi([0 1],1000,1);

Create an HT configuration object, and generate an HT waveform.

ht = wlanHTConfig;
preChHT = wlanWaveformGenerator(bits,ht);

Pass the signal through a TGn SISO channel with AWGN noise (SNR=10 dB) and a receiver with a 9
dB noise figure. Recall that the channel model sampling frequency is equal to the bandwidth in this
example. Set parameters using Name,Value pairs.

Create a TGn channel object. Set the channel model sampling frequency and channel bandwidth,
enable path loss and shadowing, and use the Model-F delay profile.

3 Tutorials

3-44

fs = 20e6; % Channel model sampling frequency equals the channel bandwidth
tgnChan = wlanTGnChannel('SampleRate',fs,'LargeScaleFadingEffect', ...
 'Pathloss and shadowing','DelayProfile','Model-F');

Pass the HT waveform through a TGn channel. Use the awgn function to add channel noise at an SNR
level of 10 dB.

postChHT = awgn(tgnChan(preChHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the HT waveform through the receiver. Choose an appropriate noise variance, nVar, for setting
the receiver noise level. Here, the receiver noise is based on the noise variance for a receiver with a 9
dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290
K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxHT = rxNoise(postChHT, nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '20 MHz HT Waveform Before and After TGn Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'AveragingMethod','Exponential','ForgettingFactor',0.99,'Title',title,...
 'ChannelNames',{'Before','After'});
saScope([preChHT,postChHT])

 WLAN Channel Models

3-45

Path loss accounts for the roughly 50 to 60 dB of separation between the waveform before and after it
passes through the TGn channel. The path loss results from the default transmitter-to-receiver
distance of 3 meters, and from shadowing effects. The signal level variation shows the frequency
selectivity of the delay profile across the frequency spectrum.

Pass Non-HT Waveform Through 802.11g Channel

Create a bit stream to use when generating the WLAN Non-HT format waveform.

bits = randi([0 1],1000,1);

Create a non-HT configuration object, and generate a non-HT waveform.

nht = wlanNonHTConfig;
preChNonHT = wlanWaveformGenerator(bits,nht);

Calculate free-space path loss for a transmitter-to-receiver separation distance of 3 meters. Create an
802.11g channel object with a 3 Hz maximum Doppler shift and an RMS path delay equal to two
times the sample time. Recall that the channel model sampling frequency is equal to the bandwidth in
this example. Create an AWGN channel object.

dist = 3;
fc = 2.4e9;
pathLoss = 10^(-log10(4*pi*dist*(fc/3e8)));
fs = 20e6; % Channel model sampling frequency equals the channel bandwidth

3 Tutorials

3-46

maxDoppShift = 3;
trms = 2/fs;
ch802 = comm.RayleighChannel('SampleRate',fs,'MaximumDopplerShift',maxDoppShift,'PathDelays',trms);

Pass the non-HT waveform through an 802.11g channel. Use the awgn function to add channel noise
at an SNR level of 10 dB.

postChNonHT = awgn(ch802(preChNonHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the non-HT waveform through the receiver. Choose an appropriate noise variance, nVar, for
setting the receiver noise level. Here, the receiver noise is based on the noise variance for a receiver
with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxNonHT = rxNoise(postChNonHT, nVar)* pathLoss;

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '20 MHz Non-HT Waveform Before and After 802.11g Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'AveragingMethod','Exponential','ForgettingFactor',0.99,'Title',title,...
 'ChannelNames',{'Before','After'});
saScope([preChNonHT,rxNonHT])

 WLAN Channel Models

3-47

Free-space path loss accounts for the roughly 50 to 60 dB of separation between the waveform before
and after it passes through the 802.11g channel. The path loss results from the specified transmitter-
to-receiver distance of 3 meters, and from shadowing effects. The signal level variation shows the
frequency selectivity of the delay profile across the frequency spectrum.

Pass VHT Waveform Through TGac MIMO Channel

Create a bit stream to use when generating the WLAN VHT format waveform.

bits = randi([0 1],1000,1);

Create a multi-user VHT configuration object, and generate a VHT waveform. Set the number of
transmit antennas to four. Set the number of space-time streams and the number of receive antennas
to 3. Because the number of transmit antennas is not equal to the number of space-time streams, the
spatial mapping is not direct. Set the spatial mapping to Hadamard.

ntx = 4;
nsts = 3;
nrx = 3;
vht = wlanVHTConfig('NumTransmitAntennas',ntx, ...
 'NumSpaceTimeStreams',nsts,'SpatialMapping','Hadamard');
preChVHT = wlanWaveformGenerator(bits,vht);

Create TGac MIMO channel and AWGN channel objects. Recall that the channel model sampling
frequency is equal to the bandwidth in this example. Disable large-scale fading effects.

3 Tutorials

3-48

cbw = vht.ChannelBandwidth;
fs = 80e6; % Channel model sampling frequency equals the channel bandwidth
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw,...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx);
tgacChan.LargeScaleFadingEffect = 'None';

Pass the VHT waveform through a TGac channel. Use the awgn function to add channel noise at an
SNR level of 10 dB.

postChVHT = awgn(tgacChan(preChVHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the multi-user VHT waveform through a noisy TGac channel. Choose an appropriate noise
variance, nVar, for setting the AWGN level. Here, the AWGN level is based on the noise variance for a
receiver with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxVHT = rxNoise(postChVHT,nVar);

Display a spectrum analyzer showing the multiple streams after the channel effects have been added.
Use SpectralAverages = 10 to reduce noise in the plotted signals.

title = '80 MHz VHT 4x3 MIMO Waveform After TGac Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'AveragingMethod','Exponential','ForgettingFactor',0.99,'Title',title,...
 'ChannelNames',{'RX1','RX2','RX3'});
saScope(rxVHT)

 WLAN Channel Models

3-49

The overlaid signals show the TGac channel variation between the received streams.

References

[1] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE 802.11-03/940r4,
May 2004.

[2] Breit, G., H. Sampath, S. Vermani, et al. TGac Channel Model Addendum. Version 12. IEEE
802.11-09/0308r12, March 2010.

See Also
wlanHTConfig | wlanNonHTConfig | wlanTGacChannel | wlanTGnChannel | wlanVHTConfig

Related Examples
• “Waveform Generation” on page 3-22
• “Packet Recovery” on page 3-51
• “What Is WLAN?” on page 2-2

3 Tutorials

3-50

Packet Recovery
Received packets are degraded due to radio and channel impairments. Recovery of packet contents
requires symbol timing and frequency offset correction, channel estimation, and demodulation and
recovery of the preamble and payload. WLAN Toolbox functions perform these operations on VHT, HT-
mixed, and non-HT PPDU fields.

VHT Packet Recovery
This example shows how to recover contents from a VHT format waveform.

Generate 80 MHz VHT Waveform

Create a VHT configuration object. Set APEPLength to 3200 and MCS to 5. Create a transmission bit
stream for the data field. For a VHT waveform, the data field contains PSDULength*8 bits.

cfgVHT = wlanVHTConfig('APEPLength',3200,'MCS',5);
txBits = randi([0 1],cfgVHT.PSDULength*8,1);

Create the PPDU fields individually. Create L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, and
VHT-SIG-B preamble fields and the VHT-Data field.

lstf = wlanLSTF(cfgVHT);
lltf = wlanLLTF(cfgVHT);
lsig = wlanLSIG(cfgVHT);
vhtSigA = wlanVHTSIGA(cfgVHT);
vhtstf = wlanVHTSTF(cfgVHT);
vhtltf = wlanVHTLTF(cfgVHT);
vhtSigB = wlanVHTSIGB(cfgVHT);
vhtData = wlanVHTData(txBits,cfgVHT);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; vhtSigA; vhtstf; vhtltf; vhtSigB; vhtData];

Pass VHT Waveform Through TGac SISO Channel

Create TGac SISO and AWGN channel objects.

chBW = cfgVHT.ChannelBandwidth;
fs = 80e6;
tgac = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',chBW,...
 'LargeScaleFadingEffect','Pathloss and shadowing');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance, noiseVar, is
equal to kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290 K, B is the
bandwidth (sample rate), and F is the receiver noise figure. Pass the transmitted waveform through
the noisy TGac channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10)

noiseVar = 2.5438e-12

rxPPDU = awgnChan(tgac(txPPDU),noiseVar);

 Packet Recovery

3-51

Recover VHT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and correction,
and symbol timing. For this example, the carrier frequency is not offset and the packet timing is 'on-
time'. Therefore, for accurate demodulation, determination of carrier frequency offset and symbol
timing is not required.

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(cfgVHT)

fieldInd = struct with fields:
 LSTF: [1 640]
 LLTF: [641 1280]
 LSIG: [1281 1600]
 VHTSIGA: [1601 2240]
 VHTSTF: [2241 2560]
 VHTLTF: [2561 2880]
 VHTSIGB: [2881 3200]
 VHTData: [3201 12160]

The stop index of VHT-SIG-B indicates the preamble length in samples.

numSamples = fieldInd.VHTSIGB(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to delineate the
packet field boundaries.

time = ([0:double(numSamples)-1]/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));
fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSIGA(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSIGB(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('VHT Preamble')

3 Tutorials

3-52

Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgVHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgVHT);

Extract the L-SIG field from the received PPDU, recover its information bits and check the CRC.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
[recLSIG,failCRC] = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,chBW);
failCRC

failCRC = logical
 0

failCRC = 0 indicates that CRC passed.

For the VHT format, the L-SIG rate bits are constant and set to [1 1 0 1]. Inspect the L-SIG rate
information and confirm that this constant sequence is recovered. For the VHT format, the MCS
setting in VHT-SIG-A2 determines the actual data rate.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

 1 1 0 1

 Packet Recovery

3-53

Extract the VHT-SIG-A and confirm that the CRC check passed.

rxVHTSIGA = rxPPDU(fieldInd.VHTSIGA(1):fieldInd.VHTSIGA(2),:);
[recVHTSIGA,failCRC] = wlanVHTSIGARecover(rxVHTSIGA, ...
 chEstLLTF,noiseVar,chBW);
failCRC

failCRC = logical
 0

Extract the MCS setting from the VHT-SIG-A. For single user VHT, the MCS is located in VHT-SIG-A2
bits 4 through 7.

recMCSbits = (recVHTSIGA(29:32))';
recMCS = bi2de(double(recMCSbits))

recMCS = 5

isequal(recMCS,cfgVHT.MCS)

ans = logical
 1

The recovered MCS setting matches the MCS value in the configuration object.

Extract and demodulate the VHT-LTF. Use the demodulated signal to perform channel estimation. Use
the channel estimate to recover the VHT-SIG-B and VHT-Data fields.

rxVHTLTF = rxPPDU(fieldInd.VHTLTF(1):fieldInd.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,cfgVHT);
chEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,cfgVHT);

Extract and recover the VHT-SIG-B.

rxVHTSIGB = rxPPDU(fieldInd.VHTSIGB(1):fieldInd.VHTSIGB(2),:);
recVHTSIGB = wlanVHTSIGBRecover(rxVHTSIGB,chEstVHTLTF,noiseVar,chBW);

As described in IEEE Std 802.11ac-2013, Table 22-1, the value in the VHT-SIG-B Length field
multiplied by 4 is the recovered APEP length for packets carrying data. Verify that the APEP length,
contained in the first 19 bits of the VHT-SIG-B, corresponds to the specified APEP length.

sigbAPEPbits = recVHTSIGB(1:19)';
sigbAPEPlength = bi2de(double(sigbAPEPbits))*4

sigbAPEPlength = 3200

isequal(sigbAPEPlength,cfgVHT.APEPLength)

ans = logical
 1

The recovered value matches the configured APEP Length.

Recover equalized symbols using channel estimates from the VHT-LTF.

recPSDU = wlanVHTDataRecover(rxPPDU(fieldInd.VHTData(1):fieldInd.VHTData(2),:),...
 chEstVHTLTF,noiseVar,cfgVHT);

3 Tutorials

3-54

Compare transmission and receive PSDU bits.

numErr = biterr(txBits,recPSDU)

numErr = 0

The number of bit errors is zero.

HT Packet Recovery
This example shows how to recover content from an HT-format waveform.

Generate 20 MHz HT Waveform

Create an HT configuration object and transmission PSDU. Set MCS to 2. For an HT waveform, the
data field is PSDULength*8 bits.

cfgHT = wlanHTConfig('MCS',2);
txPSDU = randi([0 1],cfgHT.PSDULength*8,1);

Create the PPDU fields individually. Create L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, and HT-LTF preamble
fields and the HT-Data field.

lstf = wlanLSTF(cfgHT);
lltf = wlanLLTF(cfgHT);
lsig = wlanLSIG(cfgHT);
htsig = wlanHTSIG(cfgHT);
htstf = wlanHTSTF(cfgHT);
htltf = wlanHTLTF(cfgHT);
htData = wlanHTData(txPSDU,cfgHT);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; htsig; htstf; htltf; htData];

Pass HT Waveform Through TGn SISO Channel

Create TGn SISO channel and AWGN channel objects.

fs = 20e6;
tgnChan = wlanTGnChannel('SampleRate',fs,'LargeScaleFadingEffect','Pathloss and shadowing');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance, noiseVar, is
equal to kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290 K, B is the
bandwidth (sample rate), and F is the receiver noise figure. Pass the transmitted waveform through
the noisy TGn channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(tgnChan(txPPDU),noiseVar);

Recover HT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and correction,
and symbol timing. For this example, the carrier frequency is not offset and the packet timing is 'on-
time'. Therefore, for accurate demodulation, determination of carrier frequency offset and symbol
timing is not required.

 Packet Recovery

3-55

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(cfgHT)

fieldInd = struct with fields:
 LSTF: [1 160]
 LLTF: [161 320]
 LSIG: [321 400]
 HTSIG: [401 560]
 HTSTF: [561 640]
 HTLTF: [641 720]
 HTData: [721 9200]

The stop index of HT-LTF indicates the preamble length in samples.

numSamples = fieldInd.HTLTF(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to delineate the
packet field boundaries.

time = ([0:double(numSamples)-1]/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));
fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.HTSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.HTSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.HTLTF(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('HT Format Preamble')

3 Tutorials

3-56

Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgHT);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
[recLSIG,failCRC] = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,cfgHT.ChannelBandwidth);
failCRC

failCRC = logical
 0

failCRC = 0 indicates that CRC passed.

For the HT format, the L-SIG rate bits are constant and set to [1 1 0 1]. Inspect the L-SIG rate
information and confirm that this constant sequence is recovered. For the HT format, the MCS setting
in HT-SIG determines the actual data rate.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

 1 1 0 1

 Packet Recovery

3-57

Extract the HT-SIG and confirm that the CRC check passed.

recHTSIG = rxPPDU(fieldInd.HTSIG(1):fieldInd.HTSIG(2),:);
[recHTSIG,failCRC] = wlanHTSIGRecover(recHTSIG,chEstLLTF,noiseVar,cfgHT.ChannelBandwidth);
failCRC

failCRC = logical
 0

Extract the MCS setting from the HT-SIG. For HT, the MCS is located in HT-SIG bits 0 through 6.

recMCSbits = (recHTSIG(1:7))';
recMCS = bi2de(double(recMCSbits))

recMCS = 2

isequal(recMCS,cfgHT.MCS)

ans = logical
 1

The recovered MCS setting matches the MCS value in the configuration object.

Extract and demodulate the HT-LTF. Use the demodulated signal to perform channel estimation. Use
the channel estimate to recover the HT-Data field.

rxHTLTF = rxPPDU(fieldInd.HTLTF(1):fieldInd.HTLTF(2),:);
demodHTLTF = wlanHTLTFDemodulate(rxHTLTF,cfgHT);
chEstHTLTF = wlanHTLTFChannelEstimate(demodHTLTF,cfgHT);

Recover HT-Data Contents from PPDU

Recover the received equalized symbols using channel estimates from the HT-LTF.

[recPSDU] = wlanHTDataRecover(rxPPDU(fieldInd.HTData(1):fieldInd.HTData(2),:),...
 chEstHTLTF,noiseVar,cfgHT);

Compare the transmitted and received PSDU bits, and confirm that the number of bit errors is zero.

numErr = biterr(txPSDU,recPSDU)

numErr = 0

Non-HT Packet Recovery
This example steps through recovery of non-HT-format waveform content.

Generate 20 MHz Non-HT Waveform

Create a non-HT configuration object and transmission PSDU. Set MCS to 4.For a non-HT waveform,
the data field is PSDULength*8 bits.

cfgNonHT = wlanNonHTConfig('MCS',4);
txPSDU = randi([0 1],cfgNonHT.PSDULength*8,1);

Create the PPDU fields individually. Use the non-HT-Data contents to check the bit error rate after
recovery. Create L-STF, L-LTF, and L-SIG preamble fields and non-HT data field.

3 Tutorials

3-58

lstf = wlanLSTF(cfgNonHT);
lltf = wlanLLTF(cfgNonHT);
lsig = wlanLSIG(cfgNonHT);
nhtData = wlanNonHTData(txPSDU,cfgNonHT);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; nhtData];

Pass Non-HT Waveform Through 802.11g SISO Channel

Calculate the free-space path loss for a transmitter-to-receiver separation distance of 3 meters.
Create an 802.11g channel with a 3 Hz maximum Doppler shift and an RMS path delay equal to two
times the sample time. Create an AWGN channel.

dist = 3;
pathLoss = 10^(-log10(4*pi*dist*(2.4e9/3e8)));
fs = 20e6;
trms = 2/fs;
maxDoppShift = 3;
ch802 = comm.RayleighChannel('SampleRate',fs,'MaximumDopplerShift',maxDoppShift,'PathDelays',trms);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance, noiseVar, is
equal to kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290 K, B is the
bandwidth (sample rate), and F is the receiver noise figure. Pass the transmitted waveform through
the noisy, lossy 802.11g channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(ch802(txPPDU),noiseVar) * pathLoss;

Recover Non-HT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and correction,
and symbol timing. For this example, the carrier frequency is not offset and the packet timing is 'on-
time'. Therefore, for accurate demodulation, determination of carrier frequency offset and symbol
timing is not required.

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(cfgNonHT)

fieldInd = struct with fields:
 LSTF: [1 160]
 LLTF: [161 320]
 LSIG: [321 400]
 NonHTData: [401 7120]

The stop index of the L-SIG field indicates the preamble length in samples.

numSamples = fieldInd.LSIG(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to delineate the
packet field boundaries.

time = ((0:double(numSamples)-1)/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));

 Packet Recovery

3-59

fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('Non-HT Format Preamble')

Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgNonHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgNonHT);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
recLSIG = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,'CBW20');

The first four bits of the L-SIG field, bits 0 through 3, contain the rate information. Confirm that the
sequence [1 0 0 1] is recovered. This sequence corresponds to the 24 MHz data rate for the non-
HT MCS setting of 4.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

3 Tutorials

3-60

 1 0 0 1

Extract and demodulate the L-LTF. Use the demodulated signal to perform channel estimation. Use
the channel estimate to recover the non-HT-Data field.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgNonHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgNonHT);

Recover Non-HT-Data Contents from PPDU

Recover equalized symbols using channel estimates from HT-LTF, specifying a zero-forcing
equalization method.

rxPSDU = rxPPDU(fieldInd.NonHTData(1):fieldInd.NonHTData(2),:);
[recPSDU,~,eqSym] = wlanNonHTDataRecover(rxPSDU,chEstLLTF,noiseVar,cfgNonHT,'EqualizationMethod','ZF');

Compare the transmitted and received PSDU bits, and confirm that the number of bit errors is zero.

numErr = biterr(txPSDU,recPSDU)

numErr = 0

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig

Related Examples
• “WLAN Channel Models” on page 3-41
• “What Is WLAN?” on page 2-2
• “Build VHT PPDU”
• “Build HT PPDU”
• “Build Non-HT PPDU”

 Packet Recovery

3-61

Transmit-Receive Chain
In this section...
“Transmit Processing Chain” on page 3-62
“Receiver Processing Chain” on page 3-65

WLAN Toolbox functionality includes elements of a standard transmitter–channel–receiver processing
chain.

• Transmitter functions enable simulation of the various IEEE 802.11 3 formats. The simulated
waveform includes preamble and data fields of the PPDU. You can use this waveform in link-level
simulations. You can also use it as a test signal for test devices and equipment.

• Channel functions model various types of AWGN, fading, or moving channel environmental effects.
• Receiver functions recover the transmitted signal.

Transmit Processing Chain
WLAN Toolbox functions enable you to generate waveforms for a complete PPDU or for the individual
fields of VHT, HT-mixed, and non-HT format PPDUs.

VHT Data Transmit Processing Chain

As described in IEEE 802.11ac-2013 [4], Section 22 specifies the PHY entity for a very high
throughput (VHT) orthogonal frequency division multiplexing (OFDM) system. A VHT STA must be
capable of transmitting and receiving HT-PHY and non-HT-PHY-compliant PPDUs. Specifically, the
VHT PHY is based on the HT PHY defined in Section 20, which in turn is based on the OFDM PHY
defined in Section 18. The VHT PHY extends the maximum number of space-time streams supported
to eight and provides support for downlink multi-user (MU) transmissions. A downlink MU
transmission supports up to four users with up to four space-time streams per user, with the total
number of space-time streams not exceeding eight.

IEEE Std 802.11ac-2013 [4], Section 22 defines requirements for physical layer processing associated
with each PPDU field for the VHT format.

3. IEEE Std 802.11-2016 Adapted and reprinted with permission from IEEE. Copyright IEEE 2016. All rights reserved.

3 Tutorials

3-62

HT Data Transmit Processing Chain

IEEE 802.11-2012 [3], Section 20 defines requirements for physical layer processing associated with
each PPDU field for the HT-mixed format.

 Transmit-Receive Chain

3-63

Non-HT Data Transmit Processing Chain

IEEE 802.11-2012 [3], Section 18 defines requirements for physical layer processing associated with
each PPDU field for the OFDM modulation scheme. IEEE 802.11-2012 [3], Section 17, and Section 19
define requirements for physical layer processing associated with each PPDU field for the DSSS
modulation scheme.

3 Tutorials

3-64

Receiver Processing Chain
WLAN Toolbox functions enable you to recover transmitted VHT, HT-mixed, and non-HT format
PPDUs. The receive processing chain includes synchronization, OFDM demodulation, channel
estimation, equalization, and signal and data recovery.

VHT Data Receive Processing Chain

This figure shows the receiver elements used to process the VHT Data field. The “Signal Reception”
category includes a list of all receiver functions in the WLAN Toolbox.

 Transmit-Receive Chain

3-65

HT Data Receive Processing Chain

This figure shows the receiver elements used to process the HT Data field. The “Signal Reception”
category includes a list of all receiver functions in the WLAN Toolbox.

3 Tutorials

3-66

Non-HT Data Receive Processing Chain

This figure shows the receiver elements used to process the non-HT Data field. The “Signal
Reception” category includes a list of all receiver functions in the WLAN Toolbox.

 Transmit-Receive Chain

3-67

References
[1] IEEE 802.11™: Wireless LANs. http://standards.ieee.org/about/get/802/802.11.html

[2] IEEE Std 802.11™-2016 IEEE Standard for Information technology — Telecommunications and
information exchange between systems — Local and metropolitan area networks — Specific
requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications.

[3] IEEE Std 802.11™-2012 IEEE Standard for Information technology — Telecommunications and
information exchange between systems — Local and metropolitan area networks — Specific

3 Tutorials

3-68

requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications.

[4] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology — Telecommunications and
information exchange between systems — Local and metropolitan area networks — Specific
requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications — Amendment 4: Enhancements for Very High Throughput for Operation
in Bands below 6 GHz.

[5] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology — Telecommunications and
information exchange between systems — Local and metropolitan area networks — Specific
requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications — Amendment 3: Enhancements for Very High Throughput in the 60
GHz Band.

[6] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013.

See Also
“Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel” | “End-to-End VHT
Simulation with Frequency Correction”

 Transmit-Receive Chain

3-69

	Introduction
	WLAN Toolbox Product Description

	About WLAN
	What Is WLAN?
	Network Architecture
	WLAN Protocol Stack
	WLAN Message Exchange
	Physical Layer Evolution

	WLAN PPDU Structure
	Physical Layer Protocol Data Unit

	Packet Size and Duration Dependencies
	WLAN Radio Frequency Channels
	Acknowledgments

	Tutorials
	Mapping 802.11 Standards to WLAN Toolbox Configuration Objects
	Create Configuration Objects
	Create HE MU Configuration Object
	Create Single User HE Configuration Object
	Create DMG Configuration Object
	Create S1G Configuration Object
	Create VHT Configuration Object
	Create HT Configuration Object
	Create Non-HT Configuration Object

	HE MU Transmission
	Transmission Mode Options
	Allocation Index

	Waveform Generation
	Generate WLAN Waveforms
	Waveforms of Individual PPDU Fields

	App-Based WLAN Waveform Generation
	Generate and Parse WLAN MAC Frames
	WLAN Channel Models
	Packet Recovery
	VHT Packet Recovery
	HT Packet Recovery
	Non-HT Packet Recovery

	Transmit-Receive Chain
	Transmit Processing Chain
	Receiver Processing Chain

